

Appendix E-1

Tamarisk Apartment Complex, Hesperia
APN: 3057-121-08
Preliminary Drainage Report
Allard Engineering
May 6, 2024

ALLARD ENGINEERING

civil engineering land surveying land planning

Tamarisk Apartment Complex, Hesperia

APN: 3057-121-08

Preliminary Drainage Report

May 6, 2024

Prepared For:
Munem Maida
13302 Ranchero Road
Hesperia, CA 92344
Tel:

Prepared By:

Allard Engineering 16866 Seville Ave Fontana, CA 92335 Tel: (909) 356-1815

Email: rallard@allardeng.com

Prepared under the supervision of:

Robert K. Allard

PROFESS 10 NATOR OF CALIFORNIA OF CALIFORNIA

Bobby K Allard, P.E. RCE 85349 Exp. 03-11-2024

Discussion

Introduction

The proposed 4.9 acres of the proposed apartment complex development in the City of Hesperia, County of San Bernardino. The proposed apartment complex development area lies south of Main Street, west of Tamarisk Road, and east of Topaz Avenue.

The site is located within the City of Hesperia Master Plan of Drainage System (Proposed Regional Facility Line H-04-01) which will be built by the City of Hesperia in future. The entire site will drain to the proposed two below surface Stormtech infiltration/retention chamber system at the site. The proposed retention/infiltration chamber systems are sized to qualify for both WQMP volume as well as the retention volume from the site. The proposed infiltration/retention chamber systems will drain out to the existing street gutter in the Tamarisk Road on surface once they reach the capacity and keep draining on Tamarisk Road then to the east into the Main Street.

There are no offsite runoff from upstream tributary areas to the site. Offsite runoff intercepted north of the site by Main Street.

Purpose

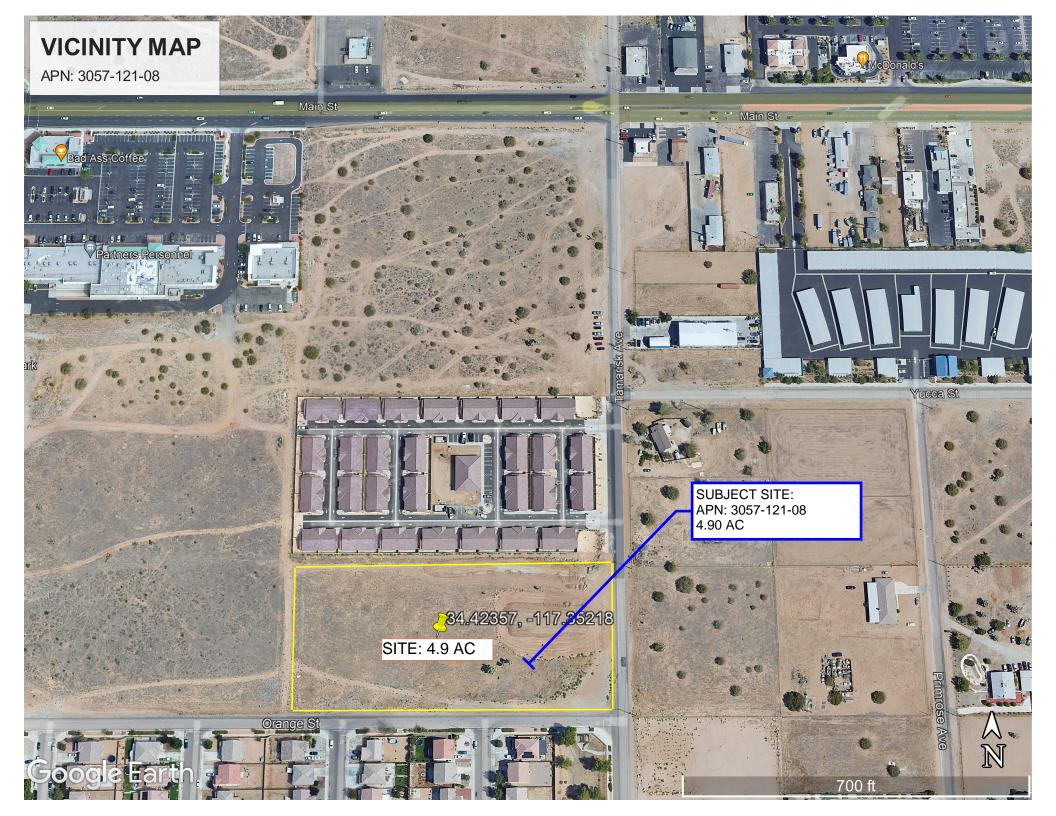
The purpose of this Drainage Report is to determine storm water runoff for onsite. Also to show that the proposed retention/infiltration chamber systems are adequately sized to convey the onsite runoff (upto 100-yr storm event) in a safe manner to the existing street gutter in Tamarisk Avenue. Detailed hydrology analysis and calculations are provided with this report for the onsite developed condition and existing condition.

Criteria

The criteria utilized for hydrologic analysis is the San Bernardino County Hydrology Manual, AES rational method hydrology analysis and the City of Hesperia Master Plan of Drainage. AES software (Rational Method Hydrology) was used to quantify onsite runoff and "13.5-cf of retention per 100-sf of impervious area" rule was used to quantify onsite detention volume. AES software were used for the proposed storm drain system onsite.

Findings

The proposed site development (4.9 acres, apartment complex) (APN: 3057-121-08) and its drainage system will comprise of storm drain pipe, ribbon/valley gutters onsite drop/grate inlets with filtration device, and multiple infiltration/retention chamber system. The infiltration/retention chamber system-1,2 are sized to qualify for both WQMP volume as well as the detention volume for the proposed developed site. Detention volume has been calculated based upon the City of Hesperia "13.5-cf of retention per 100-sf of impervious area" rule.


We calculated the runoff quantities of 18.6 cfs onsite in developed condition and 12.9 cfs in predeveloped condition using the rational method hydrology analysis for the 100-yr storm event.

The onsite runoff of 18.6 cfs generated from the proposed site in developed condition which is 4.90 acres. The onsite runoff (18.6 cfs) will be drained into the proposed two below surface infiltration/retention chamber system-1,2 for WQ volume (16,314 CF) infiltration and retention/infiltration (25,933 CF) of the

City required detention volume to mitigate HCOC condition. Once all of the retention/infiltration chamber system-1,2 reach their capacity, it will drain out to street gutter in Tamarisk Avenue at the east boundary line of the site. The runoff will follow the existing drainage course on Tamarisk Avenue and ultimately drain to the Mojave River which is the receiving water.

Reference plans/documents, calculations and the exhibits are attached to support these findings.

Reference Material

NOAA Atlas 14, Volume 6, Version 2 Location name: Hesperia, California, USA* Latitude: 34.4236°, Longitude: -117.3522° Elevation: 3420 ft** * source: ESRI Maps ** source: USGS

nia, USA* 7.3522°

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekla, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

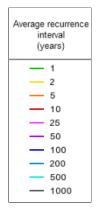
PF_tabular | PF_graphical | Maps_&_aerials

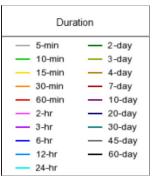
PF tabular

PD	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹						nes) ¹				
Duration	Average recurrence interval (years)										
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	0.085 (0.071-0.104)	0.121 (0.100-0.147)	0.168 (0.138-0.205)	0.206 (0.169-0.255)	0.260 (0.205-0.332)	0.302 (0.234-0.394)	0.345 (0.261-0.462)	0.390 (0.287-0.537)	0.453 (0.319-0.650)	0.502 (0.342-0.746)	
10-min	0.122 (0.101-0.149)	0.173 (0.143-0.211)	0.240 (0.198-0.294)	0.296 (0.242-0.365)	0.373 (0.295-0.476)	0.433 (0.335-0.565)	0.495 (0.374-0.662)	0.560 (0.411-0.770)	0.649 (0.457-0.931)	0.720 (0.490-1.07)	
15-min	0.148 (0.122-0.180)	0.209 (0.173-0.256)	0.290 (0.239-0.356)	0.358 (0.292-0.442)	0.451 (0.356-0.576)	0.523 (0.405-0.683)	0.598 (0.452-0.800)	0.677 (0.497-0.931)	0.785 (0.553-1.13)	0.871 (0.593-1.29)	
30-min	0.221 (0.183-0.270)	0.313 (0.258-0.382)	0.434 (0.358-0.532)	0.535 (0.437-0.661)	0.674 (0.533-0.861)	0.782 (0.606-1.02)	0.895 (0.676-1.20)	1.01 (0.743-1.39)	1.17 (0.827-1.68)	1.30 (0.886-1.93)	
60-min	0.306 (0.253-0.373)	0.432 (0.357-0.528)	0.601 (0.495-0.736)	0.740 (0.604-0.914)	0.932 (0.737-1.19)	1.08 (0.838-1.41)	1.24 (0.935-1.66)	1.40 (1.03-1.92)	1.62 (1.14-2.33)	1.80 (1.23-2.67)	
2-hr	0.442 (0.365-0.539)	0.596 (0.492-0.728)	0.804 (0.663-0.986)	0.979 (0.801-1.21)	1.22 (0.969-1.57)	1.42 (1.10-1.86)	1.63 (1.23-2.17)	1.84 (1.35-2.53)	2.15 (1.51-3.08)	2.39 (1.63-3.54)	
3-hr	0.554 (0.459-0.677)	0.737 (0.609-0.900)	0.985 (0.812-1.21)	1.20 (0.977-1.48)	1.49 (1.18-1.91)	1.73 (1.34-2.26)	1.98 (1.50-2.65)	2.25 (1.65-3.10)	2.63 (1.85-3.77)	2.94 (2.00-4.36)	
6-hr	0.777 (0.643-0.949)	1.02 (0.846-1.25)	1.36 (1.12-1.67)	1.65 (1.35-2.04)	2.07 (1.64-2.64)	2.40 (1.86-3.14)	2.76 (2.08-3.69)	3.15 (2.31-4.33)	3.70 (2.60-5.30)	4.15 (2.82-6.16)	
12 - hr	1.00 (0.829-1.22)	1.36 (1.12-1.66)	1.84 (1.52-2.26)	2.26 (1.85-2.79)	2.86 (2.26-3.65)	3.34 (2.58-4.35)	3.85 (2.91-5.14)	4.40 (3.23-6.05)	5.19 (3.65-7.44)	5.83 (3.97-8.66)	
24 - hr	1.36 (1.20-1.56)	1.90 (1.68-2.19)	2.64 (2.33-3.05)	3.28 (2.87-3.82)	4.18 (3.54-5.03)	4.91 (4.07-6.03)	5.68 (4.60-7.15)	6.51 (5.13-8.44)	7.70 (5.82-10.4)	8.68 (6.34-12.1)	
2-day	1.54 (1.37-1.78)	2.16 (1.92-2.49)	3.02 (2.67-3.49)	3.76 (3.29-4.38)	4.83 (4.09-5.81)	5.70 (4.73-7.00)	6.63 (5.37-8.35)	7.64 (6.02-9.89)	9.10 (6.88-12.3)	10.3 (7.53-14.4)	
3-day	1.65 (1.47-1.90)	2.32 (2.05-2.67)	3.24 (2.86-3.75)	4.04 (3.54-4.71)	5.20 (4.41-6.26)	6.15 (5.11-7.57)	7.18 (5.82-9.04)	8.30 (6.54-10.7)	9.92 (7.50-13.4)	11.3 (8.24-15.8)	
4-day	1.78 (1.58-2.05)	2.50 (2.21-2.88)	3.49 (3.08-4.03)	4.35 (3.81-5.07)	5.60 (4.75-6.74)	6.63 (5.50-8.15)	7.74 (6.27-9.75)	8.95 (7.05-11.6)	10.7 (8.10-14.5)	12.2 (8.90-17.0)	
7 - day	1.99 (1.76-2.29)	2.76 (2.44-3.18)	3.84 (3.39-4.44)	4.77 (4.18-5.56)	6.12 (5.18-7.37)	7.22 (6.00-8.88)	8.42 (6.82-10.6)	9.72 (7.65-12.6)	11.6 (8.77-15.7)	13.2 (9.62-18.4)	
10-day	2.12 (1.88-2.45)	2.94 (2.61-3.39)	4.08 (3.60-4.71)	5.06 (4.43-5.89)	6.47 (5.48-7.79)	7.63 (6.33-9.38)	8.87 (7.19-11.2)	10.2 (8.06-13.2)	12.2 (9.22-16.5)	13.8 (10.1-19.3)	
20 - day	2.56 (2.27-2.94)	3.53 (3.12-4.07)	4.88 (4.30-5.63)	6.03 (5.28-7.03)	7.70 (6.52-9.27)	9.06 (7.52-11.1)	10.5 (8.53-13.3)	12.1 (9.55-15.7)	14.4 (10.9-19.5)	16.3 (11.9-22.8)	
30 - day	3.01 (2.66-3.46)	4.13 (3.66-4.76)	5.68 (5.02-6.56)	7.02 (6.14-8.17)	8.94 (7.58-10.8)	10.5 (8.73-12.9)	12.2 (9.89-15.4)	14.1 (11.1-18.2)	16.7 (12.6-22.6)	19.0 (13.8-26.5)	
45-day	3.56 (3.16-4.10)	4.84 (4.29-5.58)	6.62 (5.84-7.65)	8.15 (7.14-9.49)	10.4 (8.77-12.5)	12.2 (10.1-15.0)	14.1 (11.4-17.8)	16.2 (12.8-21.0)	19.3 (14.6-26.1)	21.9 (16.0-30.6)	
60-day	4.05 (3.59-4.67)	5.43 (4.81-6.26)	7.35 (6.49-8.49)	9.00 (7.88-10.5)	11.4 (9.65-13.7)	13.3 (11.1-16.4)	15.5 (12.5-19.5)	17.8 (14.0-23.1)	21.2 (16.0-28.6)	24.1 (17.6-33.6)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Hease refer to NOAA Atlas 14 document for more information.


Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 34.4236°, Longitude: -117.3522°

NOAA Atlas 14, Volume 6, Version 2

Created (GMT): Thu Apr 25 20:36:32 2024

Back to Top

Maps & aerials

Small scale terrain

San Bernardino County, California, Mojave River Area

134—HESPERIA LOAMY FINE SAND, 2 TO 5 PERCENT SLOPES

Map Unit Setting

National map unit symbol: hks7 Elevation: 200 to 4,000 feet

Mean annual precipitation: 6 to 9 inches

Mean annual air temperature: 57 to 61 degrees F

Frost-free period: 150 to 250 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Hesperia and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Hesperia

Setting

Landform: Fan aprons

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from granite sources

Typical profile

H1 - 0 to 6 inches: loamy fine sand H2 - 6 to 60 inches: sandy loam

Properties and qualities

Slope: 2 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): High

(1.98 to 5.95 in/hr) \(\nabla\)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 5.9 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: R030XE006CA - COARSE LOAMY

Hydric soil rating: No

Minor Components

Wrightwood

Percent of map unit: 5 percent Hydric soil rating: No

Cajon

Percent of map unit: 5 percent Hydric soil rating: No

Bull trail

Percent of map unit: 3 percent Hydric soil rating: No

Unnamed soils

Percent of map unit: 2 percent Hydric soil rating: No

Data Source Information

Soil Survey Area: San Bernardino County, California, Mojave River Area

Survey Area Data: Version 15, Aug 30, 2023

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

36 Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill ۵

Lava Flow Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot Severely Eroded Spot 0

Sinkhole ٥

Slide or Slip

Sodic Spot

Spoil Area Stony Spot

00 Very Stony Spot

Wet Spot

Other Special Line Features

Water Features

â

Δ

Streams and Canals

Transportation

Rails ---

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Bernardino County, California, Mojave River Area

Survey Area Data: Version 15, Aug 30, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Mar 17, 2022—Jun 12, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map U	Init Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
134		HESPERIA LOAMY FINE SAND, 2 TO 5 PERCENT SLOPES	4.2	100.0%			
Totals for Ar	rea of Interest		4.2	100.0%			

Worksheet H: Factor of Safety and Design Infiltration Rate and Worksheet

Fact	Factor Category Factor Description			Factor Value (v)	Product (p) p = w x v
		Soil assessment methods	0.25	2	0.50
		Predominant soil texture	0.25	2	0.50
A	Suitability	Site soil variability	0.25	1	0.25
	Assessment	Depth to groundwater / impervious layer	0.25	1	0.25
		Suitability Assessment Safety Factor		1.50	
		Tributary area size Level of pretreatment/ expected sediment loads		2	0.50
	Design			2	0.50
В		Redundancy	0.25	3	0.75
		Compaction during construction 0.25		1	0.25
		Design Safety Factor, $S_B = \Sigma p$		2.0	
Com	bined Safety Fac	3	.00		
	sured Infiltration ected for test-sp	3	.96		
Desi	gn Infiltration Ra	te, in/hr, $K_{DESIGN} = S_{TOT} / K_{M}$		1	32

Supporting Data

Briefly describe infiltration test and provide reference to test forms:

Average Inf. Rate: 3.96 in/hr from USDA WebSoil Report

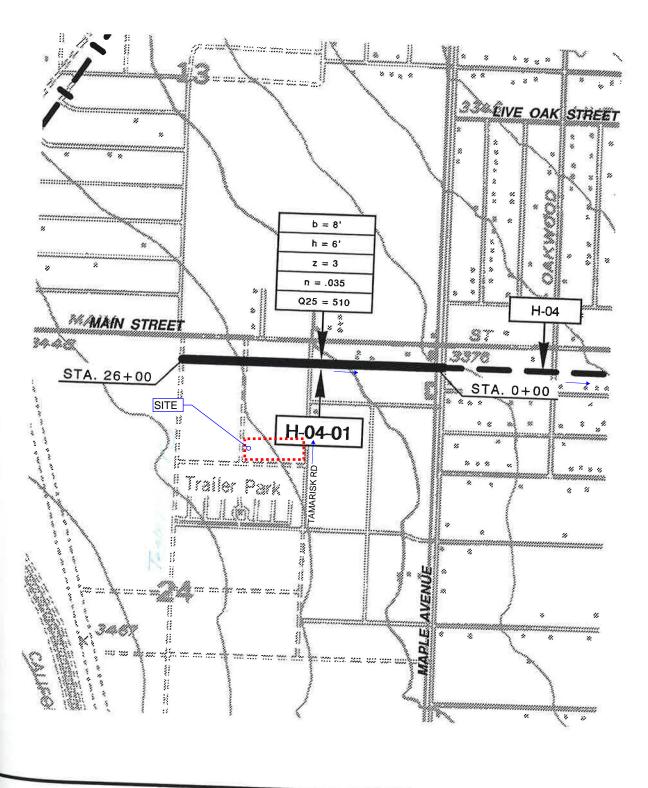
Design Inf Rate: 3.96/3.0 = 1.32"/hr

Note: The minimum combined adjustment factor shall not be less than 2.0 and the maximum combined adjustment factor shall not exceed 9.0.

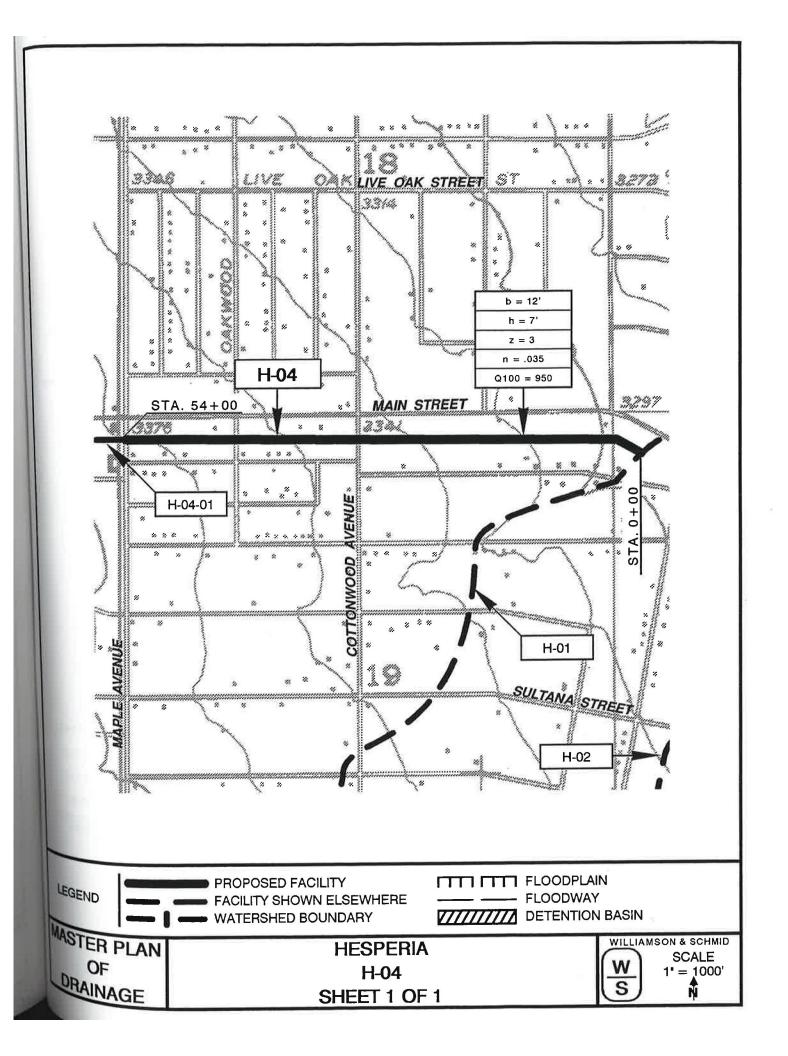
VII-35 May 19, 2011

ACTUAL IMPERVIOUS COVER

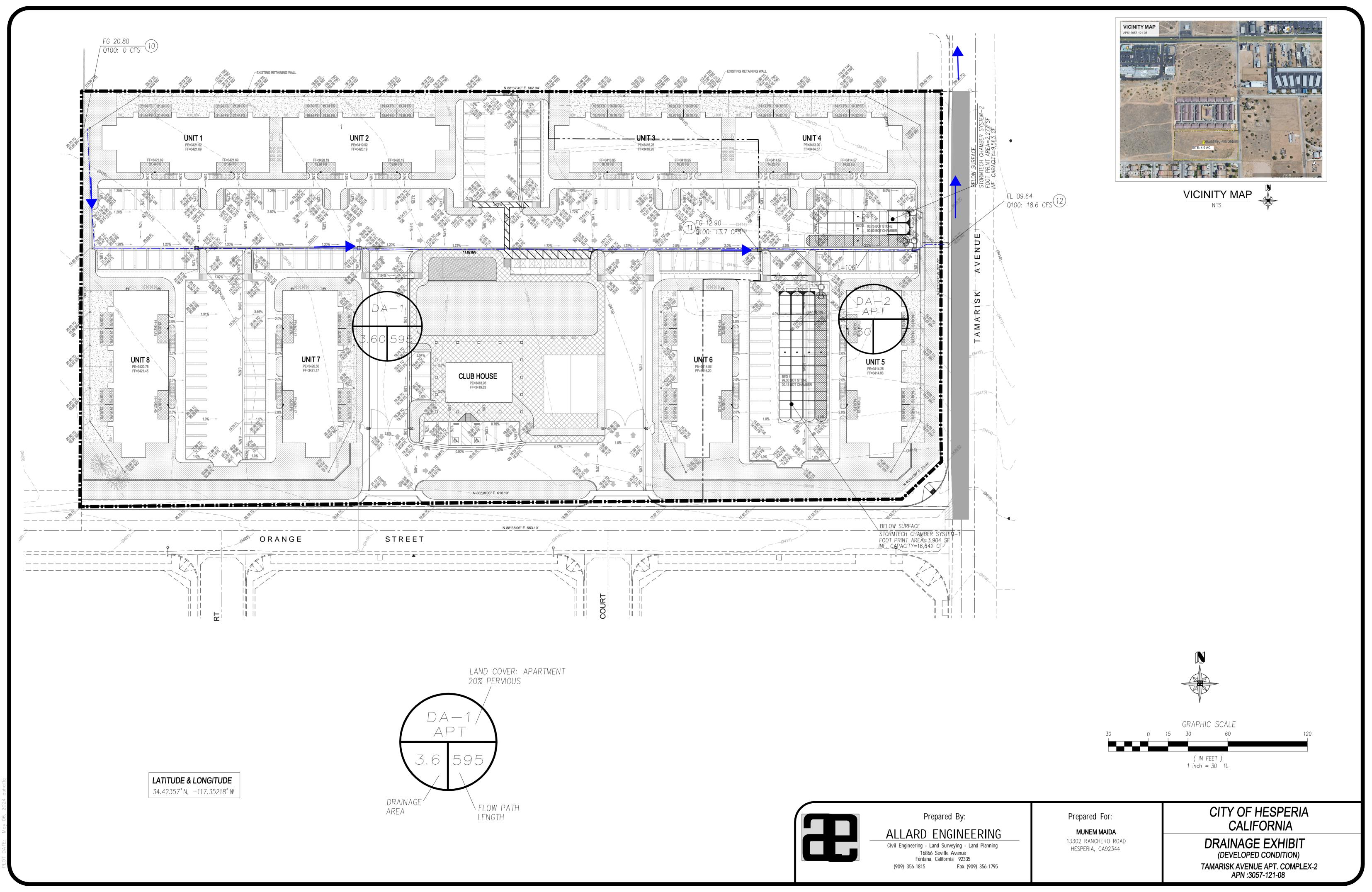
Land Use (I)	Range-Percent	Recommended Value For Average Conditions-Percent (2)
Natural or Agriculture	0 - 0	0
Public Park	10 - 25	15
School	30 - 50	40
Single Family Residential: (3)		
2.5 acre lots 1 acre lots 2 dwellings/acre 3-4 dwellings/acre 5-7 dwellings/acre 8-10 dwellings/acre More than 10 dwellings/acre Multiple Family Residential:	5 - 15 10 - 25 20 - 40 30 - 50 35 - 55 50 - 70 65 - 90	10 20 30 40 50 60 80
Condominiums	45 - 70	65
Apartments	65 - 90	80
Mobile Home Park	60 - 85	75
Commercial, Downtown Business or Industrial	80 - 100	90


Notes:

- Land use should be based on ultimate development of the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions.
- Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental gravels underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area shall always be made, and a review of aerial photos, where available, may assist in estimating the percentage of impervious cover in developed areas.
- 3. For typical equestrian subdivisions increase impervious area 5 percent over the values recommended in the table above.


SAN BERNARDINO COUNTY

HYDROLOGY MANUAL


FOR DEVELOPED AREAS

PROPOSED FACILITY LEGEND FLOODPLAIN ■ FACILITY SHOWN ELSEWHERE **FLOODWAY** WATERSHED BOUNDARY ASTER PLAN DETENTION BASIN **HESPERIA** WILLIAMSON & SCHMID OF DRAINAGE **SCALE** H-04-01 1" = 1000 SHEET 1 OF 1 N

ONSITE RATIONAL METHOD HYDROLOGY ANALYSIS (100-YR STORM EVENT)

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes)

Ver. 23.0 Release Date: 07/01/2016 License ID 1400

Analysis prepared by:

```
************************* DESCRIPTION OF STUDY *********************************
* TAMARISK APARTMENT
* HYDROLOGY ANALYSIS
* 100YR STORM EVENT, DEVELOPED CONDITION
 FILE NAME: TAM.DAT
 TIME/DATE OF STUDY: 15:22 05/06/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                 --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 48.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2400
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
   30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_____
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 595.00
                                20.80 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.902
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.376
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fρ
                                                 αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
A 3.60 0.74 0.200 52 9 90
     LAND USE
 APARTMENTS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.74
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 13.70
```

```
TOTAL AREA(ACRES) =
                      3.60 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 11.00 TO NODE
                                         12.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 12.90 DOWNSTREAM(FEET) = 9.64 CHANNEL LENGTH THRU SUBAREA(FEET) = 106.00 CHANNEL SLOPE = 0.0308
 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 18.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
        ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
           CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
           ALLOWABLE DEPTH).
           AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
           ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.364
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                 GROUP (ACRES) (INCH/HR) (DECIMAL) CN
A 1.30 0.74 0.250 52
     LAND USE
 MOBILE HOME PARK
                                        0.74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.74
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 43.28
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 0.04
 Tc(MIN.) = 9.94
 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 4.89
EFFECTIVE AREA(ACRES) = 4.90 AREA-AVERAGED Fm(INCH/HR) = 0.16
AREA-AVERAGED Fp(INCH/HR) = 0.74 AREA-AVERAGED Ap = 0.21
 TOTAL AREA(ACRES) =
                      4.9
                                  PEAK FLOW RATE(CFS) =
                                                           18.55
        ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
           CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
           ALLOWABLE DEPTH).
           AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
           ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 49.72
 ==>FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH
                            10.00 TO NODE
                                             12.00 =
 LONGEST FLOWPATH FROM NODE
                                                       701.00 FEET.
______
 END OF STUDY SUMMARY:
                           4.9 \text{ TC(MIN.)} =
 TOTAL AREA(ACRES) = 4.9 TC(MIN.) = 9.94

EFFECTIVE AREA(ACRES) = 4.90 AREA-AVERAGED Fm(INCH/HR) = 0.16

AREA-AVERAGED Fp(INCH/HR) = 0.74 AREA-AVERAGED Ap = 0.213
 TOTAL AREA(ACRES) =
                                               9.94
 PEAK FLOW RATE(CFS) = 18.55
-------
------
 END OF RATIONAL METHOD ANALYSIS
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE

(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1400

Analysis prepared by:

```
************************* DESCRIPTION OF STUDY *********************************
* TAMARISK APARTMENT
* HYDROLOGY ANALYSIS
* 100YR STORM EVENT, PRE-DEVELOPED CONDITION
 FILE NAME: TAM.DAT
 TIME/DATE OF STUDY: 15:57 05/06/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 48.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2400
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
   30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_____
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 718.00
                                22.50 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 16.135
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.110
 SUBAREA TC AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fρ
                                                αA
                                                      SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL POOR COVER
                                4.90
                                      0.18
                                               1.000 93 16.13
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.18
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
```

```
SUBAREA RUNOFF(CFS) = 12.92

TOTAL AREA(ACRES) = 4.90 PEAK FLOW RATE(CFS) = 12.92

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 4.9 TC(MIN.) = 16.13

EFFECTIVE AREA(ACRES) = 4.90 AREA-AVERAGED Fm(INCH/HR) = 0.18

AREA-AVERAGED Fp(INCH/HR) = 0.18 AREA-AVERAGED Ap = 1.000

PEAK FLOW RATE(CFS) = 12.92
```

END OF RATIONAL METHOD ANALYSIS

ONSITE RETENTION VOLUME CALCULATION FOR HCOC MITIGATION

RETENTION VOL. REQUIRED TO MITIGATE HCOC CONDITION PER THE CITY OF HESPERIA "13.5 CF/100 SF IMPERVIOUS AREA": 25,933 CF

RET/INFILTRATION CONTECH CHAMBER SYSTEM-1 CAPACITY: 16,642 CF RET/INFILTRATION CONTECH CHAMBER SYSTEM-2 CAPACITY: 9,563 CF

TOTAL RET/INFILTRATION VOLUME PROVIDED: 26,205 CF > 25,933 CF

Target Captured Volume Watershed DMA 1

1) Calculate the "Watershed Imperviousness Ratio",	I which is equ	al to the	percent of imp	pervious
area in the BMP Drainage Area divided by 100	-		-	

Imperviousness(i)=

Total Acreage(A) =

0.9

4.90

213444 sf

2) Calculate the composite Runoff Coefficient C_{bmp} for the drainage area

$$C_{bmp} = 0.858i^3 - 0.78i^2 + 0.774i + 0.04$$

 $C_{bmp} = 0.73$

3) Determine which Regression Coefficient to use by region the project is located in

 Valley
 1.481

 Mountain
 1.909

 Desert
 1.237

Regression coefficient for this project is: 1.481

4) Determine the area averaged "6 hour Mean Storm Rainfall", P6

2 yr 1 Hr Rainfall Depth per NOAA Atlas 14= 0.432 inches

 $P_6 = 2 \text{ yr 1 hr Rainfall x Regression coefficient}$

 $P_6 = 0.6398 \text{ inches}$

5) Determine Regression Constant (a) for 48 hour drawdown a for 24 hour = 1.582 a for 48 hour = 1.963

a = 1.963

6) Calculate the Maximized Detention Volume, Po

$$P_0 = C \times a \times P6$$

$$Po(inches) = 0.9172$$

7) Calculate the Target Capture Volume, Vo, in acre feet

$$V_0 = (P_0 * A)/12$$

 $V_0 =$

0.37 acre-feet

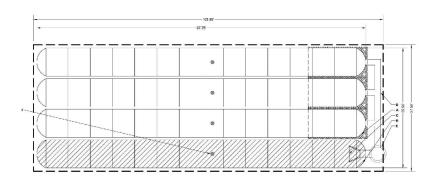
 $V_0 =$

16,314 CF

REQD. WQ VOL. : 16,314 CF

8) Retention Volume Calculation:

Use City rule of "13.5-cf of retention per 100-sf of impervious area"


*Retention Volume: 25,933 CF [{(4.9*43560)*0.90}*13.5]/100

*Required Retention Volume for HCOC mitigation.

REQD. HCOC MITIGATION VOL.: 25,933 CF

STORMTEC CHAMBER SYSTEM-1 CAPACITY CALC

ISOLATOR ROWPLUS PLACE MINIMUM 17.50' OF ADSPLUS175 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL

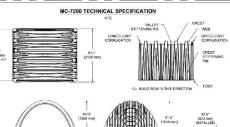
BED LIMITS

STORMING HERE FACEMMENTS
PLENT THE MODEL TO BLAVE UPON THE AM
STRUCTURES WITH DRESS OWNERS.

3

4

MC-7200 ISOLATOR ROW PLUS DETAIL


HECLO SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6 32 FOR MANIFOLD SIZING QUIDANCE.
I TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS. IT WAY BE NECESSARY TO OUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD.

NOTES

MANY LO DESTRUCTION OF THE CHARGE DAY STEEDED A PROMETER SET TECHNOTE AS I FOR MANY THE TRESSANT TO CUT ARE MANY TO THE CHARGE ASSETS OF THE CHARGE A

SPACE INTENTIONALLY LEFT BLANK

SPACE INTENTIONALLY LEFT BLANK

NOMINAL CHAMBER SPECIFICATIONS SIZE (WIX HIX INSTALLED LENGTH)

175 9 CUBIC FEET 267 3 CUBIC FEET 90.0° X 61.0° X 32.8° 39.5 GUBIC FEET 115.3 GUBIC FEET 90 lbs.

(2288 mm X 1549 mm X 833 mm) (1.12 m²) (3.26 m²) (40.8 kg)

PART#	STUB	В	C
MC7200 EPPOST	ON 14 50	42.54" (1081 mm)	
MC7200/EPP06B	6" (150 mm)	***	0.86° (22 mm)
MC7200IEPP08T	8° (200 mm)	40.50° (1029 mm)	-
MC7200/EPP08B		_	1.01" (26 mm)
MC7200/EPP10T	10° (250 mm)	38.37" (975 mm)	
MC7200/EPP10B	io (250 mm)	-	1.33" (34 mm)
MC7200/EPP12T	12" (300 mm)	35.69" (907 mm)	
MC7200IEPP12B	12 (330 mm)		1.55" (39 mm)
MC7200IEPP15T	15" (375 mm)	32.72" (831 mm)	-
MC/200/EPP15B	io (aronne)		1.70" (43 mm)
MC7200/EPP18T		29.30* (740 mm)	
MC7200IEPP18TW	18" (450 mm)		-
MC7200/EPP18B	in (450 mm)	(200)	1.97" (50 mm)
MC7200IEPP188W		_	1.27 (30 mm)
MC7200IEPP24T		23.05* (585 mm)	
MC7200IEPP24TW	24" (600 mm)	AU-US (303 HIII)	100
MC7200/EPP24B	24 (C30 mm)	869	2.28" (57 mm)
MC7200EPP2MBW		-	101/10/10/10/10
MC7200EED230GW	20" (TEO word)	-	2.00* /75 cm/

2

MC-7200 TECHNICAL SPECIFICATION

INSPECTION & MAINTENANCE

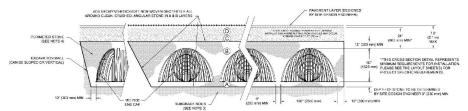
NOTIFICATION OF THE STATE OF TH

STEP 3) REPLACE ALL COVERS, CRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS

STEP 4) INSPECT AND CLEAN PASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM

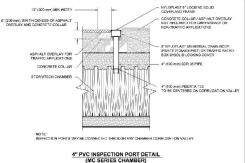
NOTES

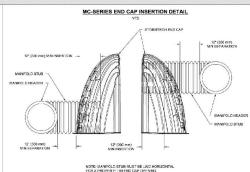
ACCEPTABLE FILL MATERIALS: STORMTECH MC-7200 CHAMBER SYSTEMS


MATERIAL LOCATION		MATERIAL LOCATION DESCRIPTION		COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 12 STARTS FROM THE TOP OF THE 12 LAYER TO THE BOTTOM OF FLEXIBLE PAYMENT OR UNPAYED FRISHED GRADE ABOVE, NOTE THAT PAYEMENT SUBBASE MAY BE PART OF THE 12 LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOLS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	NSA	PREPARE PER SITE DESIGN ENGINEER'S PLANS, PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INTIAL FILE FILL MATERIAL FOR LAYER 12 STATIS FROM THE TOP OF THE EMBEDDIENT STONE (IF LAYER, TO 24" (500 mm), ABOVE THE TOP OF THE CHANGER, NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 12 LAYER.	GRANULAR WELL-GRADED SOLAGGREGATE MIXTURES, 1996 FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M165° A-1, A-2-4, A-3 OR AASHTO M:3° 3, 557, 4, 467, 5, 55, 57, 67, 66, 7, 76, 6, 89, 9, 10	BEGIN COMPACTIONS AFTER 24" (800 mm) OF MATERIAL CVERT THE CHAMBERS IS REACHED, COMPACT ADDITIONAL LAYERS I 12" (300 mm) MAX LIT'S TO A MM. 95% PROCTOR DESITY FOR WELL GRADED MATERIAL AND 55%, RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE (A: LAYER) TO THE C'LAYER ABOVE.	CLEAN, CRUSHED, ANGLIAR STONE OR RECYCLED CONCRETE 5	AASHTO M431 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQUIRED.
٨	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE 5	AASHTO M431 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. 23

- RAME NOTE:

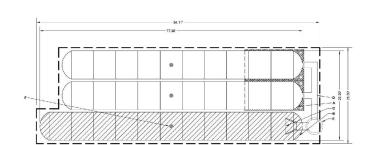
 THE JISTO AGRITO DESIGNATIONS AND FOR SANADIONS ONLY. THE STORE MUST ALSO BE CLEAR COURSED, ANGUAR FOR EXAMPLE A SECONDATION FOR MISTONE WOULD STATE "CLEAR, GRUSSED, ANGUAR NO.4 (AGRITO MS) STONE.


 STONE THE CONTROL OF THE CONTROL OF THE MIST ALSO BE CLEAR OURSED, ANGUAR FOR EXAMPLE A SECONDATION FOR MISTONE WOULD STATE "CLEAR, GRUSSED, ANGUAR NO.4 (AGRITO MS) STONE.


 STONE THE CONTROL OF THE MISTONE ANGUAR MISTONE ANGUAR MISTONE ANGUAR MISTONE ANGUAR MISTONE WOULD STATE "CLEAR MISTONE CONTROL CONTROL

MC-7200 ISOLATOR ROW PLUS DETAIL

5



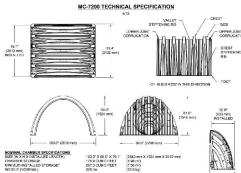
- OWNERS SWILL WEST THE REQUIREMENTS OF AS TEN PAIR, "STANDARD SHIP CHATCH FOR POLITIFICIATION FOR POLITIFICIAL ORGANIC STRUCTURAL DISEASE OF SHEWARD SWILL STORMANT IN COLLECTION CHAMBERS CHAUSE RECURSION OF SHEWARD SWILL STORMANT IN COLLECTION CHAMBERS CHAUSE SWILL SWILL STORMANT SWILL STORMANT SWILL STORMANT SWILL STORMANT SWILL SWILL

4" PVC INSPECTION PORT DETAIL (MC SERIES CHAMBER)

STORMTEC CHAMBER SYSTEM-2 CAPACITY CALC

PR	OPOSED LAYOUT: BED 2	CONCEPTUAL ELEVATIONS					RT ABOVE BAS	E OF CHAMBE
31	STORMTECH MC-7200 CHAMBERS	MAXIVUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED)	12.75	PART TYPE	LAYOU		INVERT*	MAX FLOW
12	STORMTECH MC 7200 END CAPS STONE ABOVE (in)	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC): MINIMUM ALLOWABLE GRADE (TOP OF HIGH CONCRETE PAVEMENT):	8.25 7.75	PREFABRICATED ENDICAP	A	16" BOTTOM PARTIAL CUT END CAP, PARTIF MC72XXIEPP18B / TYP OF ALL 16" BOTTOM CONNECTIONS	1.97*	
10	STONE BELOW (in) STONE VOID INSTALLED SYSTEM VOLUME (CF)	MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT): TOP OF STONE	7,75	PREFABRICATED END CAP	8	24" BOTTOM PARTIAL CUT END CAP, PARTIE MO72KOEPP24B / TYP OF ALL 24" BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS	2.26*	
95573	(PERIMETER STONE INCLUDED)	TOP OF MC-7200 CHAMBER:	5.75	"LAMP MANIFOLD	C	INSTALL FLAMP ON 24" ACCESS PIPE / PARTN: MCFLAMP	1.97*	
		24" ISOLATOR ROW PLUS INVERT: 18" x 18" BOTTOM MANIFOLD INVERT:		30" ADS MANHOLE	E	(DESIGN BY ENGINEER / PROVIDED BY OTHERS)	1.07	11.0 CFS IN
		BOTTOM OF MC-7200 CHAMBER: BOTTOM OF STONE:		NSPECTION PORT	F	4" SEE DETAIL (TYP 3 PLACES)		1.55

STORMTECH HIGH, VIRECONNENDS EXECUTIVE NOTITION AND PRETITION ATTENDED NOTITION OF A CONTRACT


PLACE MINIMUM 17.53' OF ADSPLUS 175 WOVEN GEOTEXTILE OVER BEDDING

EARTH OF SET ONE OF TRANSION OF SITT DESCRIPTION OF SET OF

MINING.
ITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS

SPACE INTENTIONALLY LEFT BLANK

SPACE INTENTIONALLY LEFT BLANK

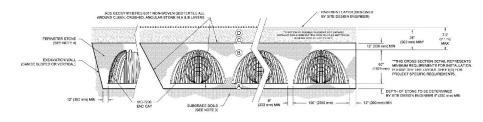
39.5 CUBIC FEET 115.3 CUBIC FEET 90 lbs.

PARTIAL CUT HOLES AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B"

PART#	STUB	В	C
MC7200IEPP08T	6" (150 mm)	42.54" (1081 mm)	
M07200IEPP08B	o (100 mm)		0.85" (22 mm)
MC7200IEPP08T	8* (200 mm)	40.501 (1029 mm)	
MC7200IEPP00B	8" (2/0 mm)		1.01" (26 mm)
MC7200IEPP10T MC7200IEPP10B	10° (250 mm)	38.37" (975 mm)	
	10 (200 1111)		1.35" (34 mm)
MC7200IEPP12T	12° (300 mm)	35.69" (907 mm)	-
MC7200IEPP12B	12 (300 1111)	_	1 55" (39 mm)
MC/20CIEPP15T	15" (375 mm)	32.72" (831 mm)	_
MC7200IEPP15B	in favoring	_	1.70" (43 mm)
MC7200IEPP18T		29.36" (745 mm)	
IC7200IEPP18TW	18" (450 mm)	25.30 (749 HBH)	177
MC720CIEPP18B	18" (450 mm)		1.97° (50 mm)
IC7200IEPP166W		_	ray (sc mm)

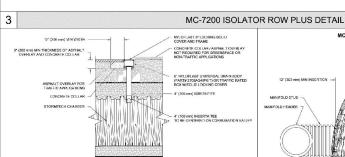
MC-7200 TECHNICAL SPECIFICATION

INSPECTION & MAINTENANCE


STEP 31 REPLACE ALL COVERS GRATES ELTERS AND LIDS RECORD DESERVATIONS AND ACTION STEP 4) INSPECT AND CLEAN BASINS AND WANHOLES LESTREAM OF THE STORMTECH SYSTEM.

NOTES

ACCEPTABLE FILL MATERIALS: STORMTECH MC-7200 CHAMBER SYSTEMS


	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER OF STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAYEMENT OR UNPAYED FINSHED GRADE ABOVE, MOTE THAT PAYEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOLUTOCK MATERIALS, INJUVE SOLS, OR PER ENGINEER'S PLANS CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEERS PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION RECUIREMENTS.
С	INITIAL FILE FILE MATERIAL FOR LAYER OF STARTS FROM THE TOP OF THE EMBEDMENT STONE (IS LAYER) TO 24" (600 mm). ABOVE THE TOP OF THE CHANGER NOTE THAT PAVEMENT SUBSIASE MAY BE A PART OF THE 'C'LAYER.	GRANJ, AR WELL GRADED SOLADGREGATE MIXTURES, 1994 FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SURRASE MATERIA'S DAN BE USED IN LIEU OF THIS LAYER.	AASHTO M1451 A-1, A-2-4, A-3 OR AASHTO M3-1 3, 357, 4, 467, 5, 56, 57, 6, 57, 66, 7, 78, 6, 89, 9, 10	BEGIN COMPACTIONS AFTER 24" (800 mm) OF MATERIA. OVE THE CHAMBERS IS REACHED COMPACT ADDITIONAL LAYERS 12" (800 mm) MAX LIFTS TO A MM 95% PROCTOR DENSITY FOR WELL GROUND MATERIAL AND SK; wild IN IV INNISITY FOR PROCESSED ADDRESSED ASSESSED MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE POUNDATION STONE (A: LAYER) TO THE CHAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE S	AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQUIRED.
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGLIAR STONE OR RECYCLED CONCRETE*	AASHTO M431 3, 357, 4, 467, 5, 50, 57	PLATE COMPACT OR BOLL TO ACHIEVE A FLAT SURFACE. 12

2



NOTES:

- CAMBERS SHALL NEET THE REQUIREMENTS OF ASTIM RAYIN, STANDARD SPECIFICATION FOR POLYPROPYLINE, SPECIARRADATED WALL STONMANTER COLLECTION CHAMBERS OF ANNUAL STORMANTER OLD RECTION SHAPE AND EXPANSES SHALL BE DEBIGIED IN ACCORDINATE WITH ASTIM PUTP STEMPAND PRINCIPLES FIRST STRUCTURE. SHERRING THE PRINCIPLE SHERRING SH

MC-7200 ISOLATOR ROW PLUS DETAIL

4" PVC INSPECTION PORT DETAIL (MC SERIES CHAMBER) 4" PVC INSPECTION PORT DETAIL (MC SERIES CHAMBER)

5 MC-SERIES END CAP INSERTION DETAIL

MC-7200 CROSS SECTION DETAIL