Appendix E

Water Quality Management Plan

City of Hesperia E

MOJAVE RIVER WATERSHED Water Quality Management Plan

For:

Hesperia Industrial

WHERE APPLICABLE, INSERT GRADING PERMIT NO., BUILDING PERMIT NO., TRACT NUMBER, LAND DEVELOPMENT FILE NO., CUP, SUP AND/OR APN (SPECIFY LOT NUMBERS IF SITE IS A PORTION OF A TRACT)

Prepared for:

Cire Equity

530 B St. Suite 2050

San Diego, CA 92101

Phone: (520) 370-2571

Prepared by:

IMEG Corp

901 Via Piemonte, Suite 400

Ontario, California 91764

Phone: (909) 942-5540

Submittal Date: 05/30/2023

Revision No. and Date: Insert No and Current Revision Date

Revision No. and Date: <u>Insert No and Current Revision Date</u>

Revision No. and Date: Insert No and Current Revision Date

Revision No. and Date: Insert No and Current Revision Date

Revision No. and Date: Insert No and Current Revision Date

Final Approval Date:

Project Owner's Certification

This Mojave River Watershed Water Quality Management Plan (WQMP) has been prepared for Cire Equity by IMEG Corp. The WQMP is intended to comply with the requirements of the City of Hesperia and the Phase II Small MS4 General Permit for the Mojave River Watershed. The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with the Phase II Small MS4 Permit and the intent of San Bernardino County (unincorporated areas of Phelan, Oak Hills, Spring Valley Lake and Victorville) and the incorporated cities of Hesperia and Victorville and the Town of Apple Valley. Once the undersigned transfers its interest in the property, its successors in interest and the city/county/town shall be notified of the transfer. The new owner will be informed of its responsibility under this WQMP. A copy of the approved WQMP shall be available on the subject site in perpetuity.

"I certify under a penalty of law that the provisions (implementation, operation, maintenance, and funding) of the WQMP have been accepted and that the plan will be transferred to future successors."

	Project Data					
Permit/Application Number(s):			Grading Permit Number(s):			
Tract/Parcel Map Number(s): 5807		Building Permit Number(s):				
CUD CUD 1/	101/6			Al	PN: 0397-113-03-0000	
CUP, SUP, and/	or apn (Spe	ecify Lot Numbe	ers if Portions of Tract):		ots 120 and 121	
	Owner's Signature					
Owner Name:						
Title	Owner	Owner				
Company	Cire Equity					
Address	7878 N. 16 th Street Phoenix, AZ 85020					
Email	srussell@cireequity.com					
Telephone #	(520) 370-2571					
Signature				Date		

Preparer's Certification

Project Data					
Permit/Application Number(s):		Grading Permit Number(s):			
Tract/Parcel Map Number(s):	5807	Building Permit Number(s):			
CUP, SUP, and/or APN (Sp	APN: 0397-113-03-0000 Lots 120 and 121				

"The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control measures in this plan were prepared under my oversight and meet the requirements of the California State Water Resources Control Board Order No. 2013-0001-DWQ.

Engineer: Joh	n Thompson	PE Stamp Below
Title	Client Executive	
Company	IMEG Corp	
Address	901 Via Piemonte, Suite 400, Ontario CA 91764	
Email	John.M.Thompson@imegcorp.com	
Telephone #	909-942-5540	
Signature		
Date		

Table of Contents

Section I	Introduction						
Section 1	Discretionary Permits	1-1					
Section 2	Project Description	2-1					
	2.1 Project Information	2-1					
	2.2 Property Ownership / Management	2-2					
	2.3 Potential Stormwater Pollutants	2-3					
	2.4 Water Quality Credits	2-4					
Section 3	Site and Watershed Description	3-1					
Section 4	Best Management Practices	4-1					
	4.1 Source Control and Site Design BMPs	4-1					
	4.1.1 Source Control BMPs	4-1					
	4.1.2 Site Design BMPs	4-6					
	4.2 Treatment BMPs	4-7					
	4.3 Project Conformance Analysis	4-12					
	4.3.1 Site Design BMP	4-14					
	4.3.2 Infiltration BMP	4-16					
	4.3.4 Biotreatment BMP	4-19					
	4.3.5 Conformance Summary	4-23 4-24					
	4.3.6 Hydromodification Control BMP	4-24 4-25					
	Inspection & Maintenance Responsibility Post Construction BMPs	5-1					
Section 6	Site Plan and Drainage Plan	6-1					
	6.1. Site Plan and Drainage Plan	6-1					
	6.2 Electronic Data Submittal	6-1					
Forms							
Form 1-1 I	Project Information	1-1					
	L Description of Proposed Project	2-1					
	Property Ownership/Management	2-2					
	L Pollutants of Concern	2-3					
Form 2.4-:	L Water Quality Credits	2-4					
Form 3-1 9	Site Location and Hydrologic Features	3-1					
Form 3-2 I	Hydrologic Characteristics	3-2					
Form 3-3 \	Natershed Description	3-3					
Form 4.1-:	L Non-Structural Source Control BMP	4-2					
Form 4.1-2	2 Structural Source Control BMP	4-4					
Form 4.1-3	Site Design Practices Checklist	4-6					
Form 4.2-	L LID BMP Performance Criteria for Design Capture Volume	4-7					
	2 Summary of Hydromodification Assessment	4-8					
	B Hydromodification Assessment for Runoff Volume	4-9					
Form 4.2-4 Hydromodification Assessment for Time of Concentration							

Form 4.2-5 Hydromodification Assessment for Peak Runoff	4-11
Form 4.3-1 Infiltration BMP Feasibility	4-13
Form 4.3-2 Site Design BMP	4-14
Form 4.3-3 Infiltration LID BMP	4-17
Form 4.3-4 Selection and Evaluation of Biotreatment BMP	4-19
Form 4.3-5 Volume Based Biotreatment – Bioretention and Planter Boxes w/Underdrains	4-20
Form 4.3-6 Volume Based Biotreatment- Constructed Wetlands and Extended Detention	4-21
Form 4.3-7 Flow Based Biotreatment	4-22
Form 4.3-8 Conformance Summary and Alternative Compliance Volume Estimate	4-23
Form 4.3-9 Hydromodification Control BMP	4-24
Form 5-1 BMP Inspection and Maintenance	5-1

- Appendix A Vicinity map, WQMP site plan, and receiving waters map
- Appendix B- Supporting detail related to hydrologic conditions of concern
- Appendix C Educational materials
- Appendix D Soils report
- Appendix E - Structural BMP and/or retention facility sizing calculations and design details

Appendix F - Covenant and agreements, BMP maintance agreements and/or other mechanisms for ensuring ongoing operation, maintenance, funding and transfer of requirements for this project - specific WQMP

Contents iii

Section I – Introduction

This WQMP template has been prepared specifically for the Phase II Small MS4 General Permit in the Mojave River Watershed. This location is within the jurisdiction of the Lahontan Regional Water Quality Control Board (LRWQCB). This document should not be confused with the WQMP template for the Santa Ana Phase I area of San Bernardino County.

WQMP preparers must refer to the MS4 Permit for the Mojave Watershed WQMP template and Technical Guidance (TGD) document found at: http://cms.sbcounty.gov/dpw/Land/NPDES.aspx to find pertinent arid region and Mojave River Watershed specific references and requirements.

Section 1 Discretionary Permit(s)

	Form 1-1 Project Information							
Project Na	me	Hesperia Industrial						
Project Ow	ner Contact Name:	Steve Russell						
Mailing Address:	7878 N. 16 th Street, Phe	niox AZ 85020	E-mail Address:	srussell@cireequity.com	Telephone:	520-370-2571		
Permit/Ap	plication Number(s):			Tract/Parcel Map Number(s):	5807			
Additional	Information/				1			
Comments	:							
Description of Project:		about 8.2% of the and most of the si adding loading do and utility coordir and impervious ar	site including te consists of the transfer the transfer to assist eas after the	g warehouse building with a build general amound the building and small amound for dirt and landscaping. The propagations, making the parking layers drainage on site since there a improvements. The paved arrill have forklift drivers movig p	ont of pavement oposed improve out and striping will be an incre ea on the north	is developed ments incluide ADA compliant, ase in paving end of the site		
WQMP cor	mmary of Conceptual nditions (if previously and approved). Attach copy.	N/A						

Section 2 Project Description

2.1 Project Information

The WQMP shall provide the information listed below. The information provided for Conceptual/Preliminary WQMP should give sufficient detail to identify the major proposed site design and LID BMPs and other anticipated water quality features that impact site planning. Final Project WQMP must specifically identify all BMP incorporated into the final site design and provide other detailed information as described herein.

The purpose of this information is to help determine the applicable development category, pollutants of concern, watershed description, and long term maintenance responsibilities for the project, and any applicable water quality credits. This information will be used in conjunction with the information in Section 3, Site Description, to establish the performance criteria and to select the LID BMP or other BMP for the project or other alternative programs that the project will participate in, which are described in Section 4.

2.1.1 Project Sizing Categorization

If the Project is greater than 5,000 square feet, and not on the excluded list as found on Section 1.4 of the TGD, the Project is a Regulated Development Project.

If the Project is creating and/or replacing greater than 2,500 square feet but less than 5,000 square feet of impervious surface area, then it is considered a Site Design Only project. This criterion is applicable to all development types including detached single family homes that create and/or replace greater than 2,500 square feet of impervious area and are not part of a larger plan of development.

Form 2.1-1 Description of Proposed Project								
1 Regulated Developme	ent Proje	ct Catego	ry (Select all that apply):					
involving the creation of 5,000 developed addition surface collectively over entire 5,000 ft ²		ignificant re- ment involving the or replacement of or more of impervious on an already ed site	road, lane great feet o	f3 Road Project - sidewalk, or bic project that crea er than 5,000 sq of contiguous rvious surface	ycle ites	unde proje discr 5,00 new	#4 LUPs – linear underground/overhead projects that has a discrete location with 5,000 sq. ft. or more new constructed impervious surface	
Site Design Only (Project Total Square Feet > 2,500 but < 5,000 sq.ft.) Will require source control Site Design Measures. Use the "PCMP" Template. Do not use this WQMP Template.								
Project Area (ft2):	266,353	3 Number of Dwelling		ng Units: N/A 4 SIC		4 SIC C	ode:	1541
Is Project going to be phased? Yes No If yes, ensure that the WQMP evaluates each phase as a distinct DA, requiring LID BMPs to address runoff at time of completion.								

2.2 Property Ownership/Management

Describe the ownership/management of all portions of the project and site. State whether any infrastructure will transfer to public agencies (City, County, Caltrans, etc.) after project completion. State if a homeowners or property owners association will be formed and be responsible for the long-term maintenance of project stormwater facilities. Describe any lot-level stormwater features that will be the responsibility of individual property owners.

Form 2.2-1 Property Ownership/Management

Describe property ownership/management responsible for long-term maintenance of WQMP stormwater facilities:

The project provides design and engineering services for construction of Hesperial Industrial. The warehouse is located at 6730 Santa Fe Ave. East Hesperia, California on a 6.11 acres. The property owner of the project site is Cire Equity. The consultant in charge of the civil engineering scope of the project is IMEG corp. The main scope that IMEG corp will be handling is the design of the proposed loading docks, ADA parking, parking lot striping and layout, the ramp between lots and utility coordinattion. Along with these reponsibilities, the IMEG engineers will be submitting a hydrology study, WQMP, and will create a plan set including the demolition, grading and drainage. Once IMEG finishes these duties and is approved by the city, IMEG is not reponsible for long term matinance of the project stormwater facilities. Details on how to best manage the storwater facilities will be provided in the studies. The maintiance will fall onto the property owners once the civil scope is complete.

2.3 Potential Stormwater Pollutants

Best Management Practices (BMP) measures for pollutant generating activities and sources shall be designed consistent with recommendations from the CASQA Stormwater BMP Handbook for New Development and Redevelopment (or an equivalent manual). Pollutant generating activities must be considered when determining the overall pollutants of concern for the Project as presented in Form 2.3-1.

Determine and describe expected stormwater pollutants of concern based on land uses and site activities (refer to Table 3-2 in the TGD for WQMP).

Form 2.3-1 Pollutants of Concern						
Pollutant	Please check: E=Expected, N=Not Expected		Additional Information and Comments			
Pathogens (Bacterial / Virus)	E 🔀	N 🗌				
Nutrients - Phosphorous	E 🖾	N 🗌				
Nutrients - Nitrogen	E 🖂	N 🗌				
Noxious Aquatic Plants	E 🖾	N 🗌				
Sediment	E 🖂	N 🗌				
Metals	E 🖂	N 🗌				
Oil and Grease	E 🖾	N 🗌				
Trash/Debris	E 🖾	N 🗌				
Pesticides / Herbicides	E 🖾	N 🗌				
Organic Compounds	E 🔀	N 🗌				
Other:	E 🗌	N 🗌				
Other:	E 🗌	N 🗌				
Other:	E 🗌	N 🗌				

Section 3 Site and Watershed Description

Describe the project site conditions that will facilitate the selection of BMPs through an analysis of the physical conditions and limitations of the site and its receiving waters. Identify distinct drainage areas (DA) that collect flow from a portion of the site and describe how runoff from each DA (and sub-watershed Drainage Management Areas (DMAs)) is conveyed to the site outlet(s). Refer to Section 3.2 in the TGD for WQMP. The form below is provided as an example. Then complete Forms 3.2 and 3.3 for each DA on the project site. If the project has more than one drainage area for stormwater management, then complete additional versions of these forms for each DA / outlet. A map presenting the DMAs must be included as an appendix to the WQMP document.

Fo	rm 3	-1 Site Location a	nd Hydrologic Fea	atures		
Site coordinates take GPS measurement at approximate center of site		Latitude 34.3730	Longitude -117.3211	Thomas Bros Map page		
¹ San Bernardino County	climatic r	egion: 🛛 Desert				
conceptual schematic describ	oing DMAs	e drainage area (DA): Yes N and hydrologic feature connecting E ving clearly showing DMA and flow r	DMAs to the site outlet(s). An examp	· · · · · · · · · · · · · · · · · · ·		
Conveyance	Briefly o	describe on-site drainage feature	es to convey runoff that is not r	etained within a DMA		
DA1 DMA C flows to DA1 DMA A						
DA1 DMA A to Outlet 1	A1 DMA A to Outlet 1					
DA1 DMA B to Outlet 1						
DA2 to Outlet 2	DA2 to Outlet 2					

Form 3-2 Existing Hydro	ologic Chara	acteristics fo	or Drainage	Area 1
For Drainage Area 1's sub-watershed DMA, provide the following characteristics	DMA A	DMA B	DMA C	DMA D
1 DMA drainage area (ft²)	65,455	8,037	120,620	
2 Existing site impervious area (ft ²)	57,635.3	8,037	100	
Antecedent moisture condition For desert areas, use http://www.sbcounty.gov/dpw/floodcontrol/pdf/2 0100412 map.pdf	N/A	N/A	N/A	
4 Hydrologic soil group Refer to County Hydrology Manual Addendum for Arid Regions – http://www.sbcounty.gov/dpw/floodcontrol/pdf/2 0100412_addendum.pdf	В	В	В	
5 Longest flowpath length (ft)	242	78	442	
6 Longest flowpath slope (ft/ft)	1.26%	4.10%	2.87%	
7 Current land cover type(s) Select from Fig C-3 of Hydrology Manual	90	90	86	
8 Pre-developed pervious area condition: Based on the extent of wet season vegetated cover good >75%; Fair 50-75%; Poor <50% Attach photos of site to support rating	POOR	POOR	POOR	

Form 3-2 Existing Hydro	_		_	
For Drainage Area 1's sub-watershed DMA, provide the following characteristics	DMA E	DMA F	DMA G	DMA H
1 DMA drainage area (ft²)				
2 Existing site impervious area (ft²)				
Antecedent moisture condition For desert areas, use http://www.sbcounty.gov/dpw/floodcontrol/pdf/2 0100412 map.pdf				
4 Hydrologic soil group County Hydrology Manual Addendum for Arid Regions – http://www.sbcounty.gov/dpw/floodcontrol/pdf/2 0100412_addendum.pdf				
5 Longest flowpath length (ft)				
6 Longest flowpath slope (ft/ft)				
7 Current land cover type(s) Select from Fig C-3 of Hydrology Manual				
8 Pre-developed pervious area condition: Based on the extent of wet season vegetated cover good >75%; Fair 50-75%; Poor <50% Attach photos of site to support rating				

Form 3-3 Watershe	d Description for Drainage Area
Receiving waters Refer to SWRCB site: http://www.waterboards.ca.gov/water_issues/ programs/tmdl/integrated2010.shtml	Mojavie river below lower narrows, the mohavie river upper narrows to lower narrows, and mojave river mohave forks outlet to upper narrows.
Applicable TMDLs http://www.waterboards.ca.gov/water_issues/progr ams/tmdl/integrated2010.shtml	Fluoride, sulfates, total dissolved solids
303(d) listed impairments http://www.waterboards.ca.gov/water_issues/progr ams/tmdl/integrated2010.shtml	Fluoride, sulfates, total dissolved solids
Environmentally Sensitive Areas (ESA) Refer to Watershed Mapping Tool – http://sbcounty.permitrack.com/WAP	N/A
Hydromodification Assessment	Yes Complete Hydromodification Assessment. Include Forms 4.2-2 through Form 4.2-5 and Hydromodification BMP Form 4.3-9 in submittal No

Section 4 Best Management Practices (BMP)

4.1 Source Control BMPs and Site Design BMP Measures

The information and data in this section are required for both Regulated Development and Site Design Only Projects. Source Control BMPs and Site Design BMP Measures are the basis of site-specific pollution management.

4.1.1 Source Control BMPs

Non-structural and structural source control BMP are required to be incorporated into all new development and significant redevelopment projects. Form 4.1-1 and 4.1-2 are used to describe specific source control BMPs used in the WQMP or to explain why a certain BMP is not applicable. Table 7-3 of the TGD for WQMP provides a list of applicable source control BMP for projects with specific types of potential pollutant sources or activities. The source control BMP in this table must be implemented for projects with these specific types of potential pollutant sources or activities.

The preparers of this WQMP have reviewed the source control BMP requirements for new development and significant redevelopment projects. The preparers have also reviewed the specific BMP required for project as specified in Forms 4.1-1 and 4.1-2. All applicable non-structural and structural source control BMP shall be implemented in the project.

The identified list of source control BMPs correspond to the CASQA Stormwater BMP Handbook for New Development and Redevelopment.

	Form 4.1-1 Non-Structural Source Control BMPs							
		Che	ck One	Describe BMP Implementation OR,				
Identifier	Name	Included	Not Applicable	if not applicable, state reason				
N1	Education of Property Owners, Tenants and Occupants on Stormwater BMPs							
N2	Activity Restrictions							
N3	Landscape Management BMPs	\boxtimes						
N4	BMP Maintenance	\boxtimes						
N5	Title 22 CCR Compliance (How development will comply)	\boxtimes						
N6	Local Water Quality Ordinances	\boxtimes						
N7	Spill Contingency Plan		\boxtimes	The site does not anticipate spillage of any chemicals				
N8	Underground Storage Tank Compliance		\boxtimes	THe site does not propose any underground storage tanks				
N9	Hazardous Materials Disclosure Compliance			The site does not anticipate hazardous materials on-site				

	Form 4.1-1 Non-Structural Source Control BMPs									
	1 .05		ck One	Describe BMP Implementation OR,						
Identifier	Name	Included	Not Applicable	if not applicable, state reason						
N10	Uniform Fire Code Implementation									
N11	Litter/Debris Control Program	\boxtimes								
N12	Employee Training	\boxtimes								
N13	Housekeeping of Loading Docks	\boxtimes								
N14	Catch Basin Inspection Program	\boxtimes								
N15	Vacuum Sweeping of Private Streets and Parking Lots	\boxtimes								
N16	Other Non-structural Measures for Public Agency Projects									
N17	Comply with all other applicable NPDES permits									

	Form 4.1-2 Structural Source Control BMPs								
		Chec	ck One	Describe BMP Implementation OR,					
Identifier	Name	Included Not Applicable		If not applicable, state reason					
S1	Provide storm drain system stencilling and signage (CASQA New Development BMP Handbook SD-13)								
S2	Design and construct outdoor material storage areas to reduce pollution introduction (CASQA New Development BMP Handbook SD-34)	\boxtimes							
\$3	Design and construct trash and waste storage areas to reduce pollution introduction (CASQA New Development BMP Handbook SD-32)	\boxtimes							
S 4	Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control (Statewide Model Landscape Ordinance; CASQA New Development BMP Handbook SD-12)								
S 5	Finish grade of landscaped areas at a minimum of 1-2 inches below top of curb, sidewalk, or pavement								
S6	Protect slopes and channels and provide energy dissipation (CASQA New Development BMP Handbook SD-10)	\boxtimes							
S 7	Covered dock areas (CASQA New Development BMP Handbook SD-31)			Trench drain provided to capture runoff					
S8	Covered maintenance bays with spill containment plans (CASQA New Development BMP Handbook SD-31)			The truck base will not anticipate any spillage					
S9	Vehicle wash areas with spill containment plans (CASQA New Development BMP Handbook SD-33)			The site does not propose any vehicle wash areas.					
S10	Covered outdoor processing areas (CASQA New Development BMP Handbook SD-36)			The site does not propose any outdoor processing areas.					

	Form 4.1-2 Structural Source Control BMPs								
		Chec	k One	Describe BMP Implementation OR,					
Identifier	entifier Name		Not Applicable	If not applicable, state reason					
S11	Equipment wash areas with spill containment plans (CASQA New Development BMP Handbook SD-33)			The site does not antincipate any spillage.					
S12	Fueling areas (CASQA New Development BMP Handbook SD-30)			The site does not propose any fueling areas.					
S13	Hillside landscaping (CASQA New Development BMP Handbook SD-10)		\boxtimes	There is no proposed hillside landscaping					
S14	Wash water control for food preparation areas			There is not proposed wash water control for food prepreation areas on site.					
S15	Community car wash racks (CASQA New Development BMP Handbook SD-33)			Community car wash racks are not proposed for this site.					

4.1.2 Site Design BMPs

As part of the planning phase of a project, the site design practices associated with new LID requirements in the Phase II Small MS4 Permit must be considered. Site design BMP measures can result in smaller Design Capture Volume (DCV) to be managed by both LID and hydromodification control BMPs by reducing runoff generation.

As is stated in the Permit, it is necessary to evaluate site conditions such as soil type(s), existing vegetation and flow paths will influence the overall site design.

Describe site design and drainage plan including:

- A narrative of site design practices utilized or rationale for not using practices
- A narrative of how site plan incorporates preventive site design practices
- Include an attached Site Plan layout which shows how preventative site design practices are included in WQMP

Refer to Section 5.2 of the TGD for WQMP for more details.

Form 4.1-3 Site Design Practices Checklist
Site Design Practices If yes, explain how preventative site design practice is addressed in project site plan. If no, other LID BMPs must be selected to meet targets
Minimize impervious areas: Yes No Explanation: The site provides enough impervious area for trucks to enter and exit the site.
Maximize natural infiltration capacity; Including improvement and maintenance of soil: Yes No CEXPLAIN
Preserve existing drainage patterns and time of concentration: Yes No Explanation: The proposed drainage patterns were not altered.
Disconnect impervious areas. Including rerouting of rooftop drainage pipes to drain stormwater to storage or infiltration BMPs instead of to storm drain: Yes No Explanation: All flows are captured and directed towards infiltration BMPs.
Use of Porous Pavement.: Yes \(\sum \) No \(\sum \) Explanation:
Protect existing vegetation and sensitive areas: Yes No Explanation: Existing Joshua tree will be protected as indicated in the geotechnical report.
Re-vegetate disturbed areas. Including planting and preservation of drought tolerant vegetation. : Yes 🗌 No 🔀 Explanation:

Minimize unnecessary compaction in stormwater retention/infiltration basin/trench areas: Yes No Explanation: Pervious areas are not compacted.
Utilize naturalized/rock-lined drainage swales in place of underground piping or imperviously lined swales: Yes No Explanation:
Stake off areas that will be used for landscaping to minimize compaction during construction : Yes \(\subseteq \) No \(\subseteq \) Explanation:
Use of Rain Barrels and Cisterns, Including the use of on-site water collection systems.: Yes \(\subseteq \text{No } \subseteq \) Explanation:
Stream Setbacks. Includes a specified distance from an adjacent steam: : Yes \(\sum \) No \(\subseteq \) Explanation:

It is noted that, in the Phase II Small MS4 Permit, site design elements for green roofs and vegetative swales are required. Due to the local climatology in the Mojave River Watershed, proactive measures are taken to maximize the amount of drought tolerant vegetation. It is not practical in this region to have green roofs or vegetative swales. As part of site design the project proponent should utilize locally recommended vegetation types for landscaping. Typical landscaping recommendations are found in following local references:

San Bernardino County Special Districts:

Guide to High Desert Landscaping -

http://www.specialdistricts.org/Modules/ShowDocument.aspx?documentid=795

Recommended High-Desert Plants -

http://www.specialdistricts.org/modules/showdocument.aspx?documentid=553

Mojave Water Agency:

Desert Ranch: http://www.mojavewater.org/files/desertranchgardenprototype.pdf

Summertree: http://www.mojavewater.org/files/Summertree-Native-Plant-Brochure.pdf

Thornless Garden: http://www.mojavewater.org/files/thornlessgardenprototype.pdf

Mediterranean Garden: http://www.mojavewater.org/files/mediterraneangardenprototype.pdf

Lush and Efficient Garden: http://www.mojavewater.org/files/lushandefficientgardenprototype.pdf

Alliance for Water Awareness and Conservation (AWAC) outdoor tips - http://hdawac.org/save-outdoors.html

4.2 Treatment BMPs

After implementation and design of both Source Control BMPs and Site Design BMP measures, any remaining runoff from impervious DMAs must be directed to one or more on-site, treatment BMPs (LID or biotreatment) designed to infiltrate, evaportranspire, and/or bioretain the amount of runoff specified in Permit Section E.12.e (ii)(c) Numeric Sizing Criteria for Storm Water Retention and Treatment.

4.2.1 Project Specific Hydrology Characterization

The purpose of this section of the Project WQMP is to establish targets for post-development hydrology based on performance criteria specified in Section E.12.e.ii.c and Section E.12.f of the Phase II Small MS4 Permit. These targets include runoff volume for water quality control (referred to as LID design capture volume), and runoff volume, time of concentration, and peak runoff for protection from hydromodification.

If the project has more than one outlet for stormwater runoff, then complete additional versions of these forms for each DA / outlet.

It is noted that in the Phase II Small MS4 Permit jurisdictions, the LID BMP Design Capture Volume criteria is based on the 2-year rain event. The hydromodification performance criterion is based on the 10-year rain event.

Methods applied in the following forms include:

• For LID BMP Design Capture Volume (DCV), San Bernardino County requires use of the P₆ method (Form 4.2-1) For pre- and post-development hydrologic calculation, San Bernardino County requires the use of the Rational Method (San Bernardino County Hydrology Manual Section D). Forms 4.2-2 through Form 4.2-5 calculate hydrologic variables including runoff volume, time of concentration, and peak runoff from the project site pre- and post-development using the Hydrology Manual Rational Method approach. For projects greater than 640 acres (1.0 mi²), the Rational Method and these forms should not be used. For such projects, the Unit Hydrograph Method (San Bernardino County Hydrology Manual Section E) shall be applied for hydrologic calculations for hydromodification performance criteria.

Refer to Section 4 in the TGD for WQMP for detailed guidance and instructions.

Forr	Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume								
	(DA 1)								
1 Project area DA 1 (ft ²): Site design practices (Imp%): 88.1 3 Runoff Coefficient (Rc): _0.703 $R_c = 0.858(Imp\%)^{^{^{2}}} - 0.78(Imp\%)^{^{^{2}}} + 0.774(Imp\%) + 0.04$									
Determine 1-hour rainfa	ll depth for a 2-year return period P _{2yr-1hr} (in): 0.4	73 <u>http://hdsc.nws.noaa.qov/hdsc/</u>	'pfds/sa/sca pfds.html						
•	Precipitation (inches): 0.59 function of site climatic region specified in Form 3-1 Item	n 1 (Desert = 1.2371)							
Drawdown Rate Use 48 hours as the default condition. Selection and use of the 24 hour drawdown time condition is subject to approval by the local jurisdiction. The necessary BMP footprint is a function of drawdown time. While shorter drawdown times reduce the performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced.									
DCV = 1/12 * [Item 1* Item 3	Compute design capture volume, DCV (ft ³): 4,402 $DCV = 1/12 * [Item 1* Item 3* Item 5* C2], where C2 is a function of drawdown rate (24-hr = 1.582; 48-hr = 1.963)$ Compute separate DCV for each outlet from the project site per schematic drawn in Form 3-1 Item 2								

Form 4.2-2 Summary of Hydromodification Assessment (DA 1)								
Is the change in post- and pre- condition flows captured on-site?: Yes No If "Yes", then complete Hydromodification assessment of site hydrology for 10yr storm event using Forms 4.2-3 through 4.2-5 and insert results below (Forms 4.2-3 through 4.2-5 may be replaced by computer software analysis based on the San Bernardino County Hydrology Manual- Addendum 1) If "No," then proceed to Section 4.3 BMP Selection and Sizing								
Condition Runoff Volume (ft³) Time of Concentration (min) Peak Runoff (cfs)								
Pre-developed	1 35,729 Form 4.2-3 Item 12	² 13.029 Form 4.2-4 Item 13	³ 0.21 Form 4.2-5 Item 10					
Post-developed	4 37,779 Form 4.2-3 Item 13	⁵ 4.716 Form 4.2-4 Item 14	⁶ 0.54 Form 4.2-5 Item 14					
Difference 8 -8.313 9 0.33 Item 4 - Item 1 Item 5 Item 6 - Item 3								
Difference (as % of pre-developed)	10 0.057% Item 7 / Item 1	11 -0.638% Item 8 / Item 2	12 1.571% Item 9 / Item 3					

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume (DA 2)								
1 Project area DA (f	.892 +0.774(Imp%)+0.04							
Determine 1-hour rain	nfall c	depth for a 2-year return period P _{2yr-1hr} (in): 0.473	http://hdsc.nws.noaa.gov/hdsc/	[/] pfds/sa/sca pfds.html				
		ecipitation (inches): 0.59 nction of site climatic region specified in Form 3-1 Item 1	(Valley = 1.4807; Mountain = 1.90	19; Desert = 1.2371)				
by the local jurisdiction. Th	Use 48 hours as the default condition. Selection and use of the 24 hour drawdown time condition is subject to approval by the local jurisdiction. The necessary BMP footprint is a function of drawdown time. While shorter drawdown times reduce the performance criteria for LID BMP design capture volume, the depth of water that can be stored is also							
	m 3 *Ite	olume, DCV (ft ³): 686 tem 5 * C_2], where C_2 is a function of drawdown rate (24-outlet from the project site per schematic drawn in Forn						

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume (DA 3)								
Project area DA (ft²): 2 Imperviousness after applying preventative site design practices (Imp%): 0.001 3 Runoff Coefficient (Rc): _0.041 $R_c = 0.858(Imp\%)^{^3} - 0.78(Imp\%)^{^2} + 0.77$								
Determine 1-hour r	ainfall (depth for a 2-year return period P _{2yr-1hr} (in): 0.473	http://hdsc.nws.noaa.gov/hdsc/	[/] pfds/sa/sca pfds.html				
		ecipitation (inches): 0.59 nction of site climatic region specified in Form 3-1 Item 1	(Valley = 1.4807; Mountain = 1.90	19; Desert = 1.2371)				
by the local jurisdiction.	Use 48 hours as the default condition. Selection and use of the 24 hour drawdown time condition is subject to approval by the local jurisdiction. The necessary BMP footprint is a function of drawdown time. While shorter drawdown times reduce the performance criteria for LID BMP design capture volume, the depth of water that can be stored is also							
DCV = 1/12 * [Item 1* It	tem 3 *It	olume, DCV (ft ³): 470 tem 5 * C_2], where C_2 is a function of drawdown rate (24- n outlet from the project site per schematic drawn in Forn						

Form 4.2-3 Hy	/dromo	dificatio	n Asses	sment f	or Runo	ff Volu	me (DA	1)
Weighted Curve Number Determination for: Pre-developed DA	DMA A	DMA B	DMA C	DMA D	DMA E	DMA F	DMA G	DMA H
1a Land Cover type	Barren							
2a Hydrologic Soil Group (HSG)	В							
3a DMA Area, ft ² sum of areas of DMA should equal area of DA	194,454							
4 a Curve Number (CN) use Items 1 and 2 to select the appropriate CN from Appendix C-2 of the TGD for WQMP	86							
Weighted Curve Number Determination for: Post-developed DA	DMA A	DMA B	DMA C	DMA D	DMA E	DMA F	DMA G	DMA H
1b Land Cover type	Industrial	Industrial	Barren					
2b Hydrologic Soil Group (HSG)	В	В	В					
3b DMA Area, ft ² sum of areas of DMA should equal area of DA	65,455	8,037	120,620					
4b Curve Number (CN) use Items 5 and 6 to select the appropriate CN from Appendix C-2 of the TGD for WQMP	90	90	86					
5 Pre-Developed area-weighted CN	I: 86	7 Pre-develop S = (1000 / Ita		ge capacity, S (in): 1.63	9 Initial at I _a = 0.2 *	ostraction, I _a (i Item 7	n): 0.326
6 Post-Developed area-weighted C	N: 87.5	8 Post-develo S = (1000 / Ita	•	ge capacity, S	(in): 1.43	10 Initial a	abstraction, I _a	(in): 0.285
11 Precipitation for 10 yr, 24 hr st Go to: http://hdsc.nws.noaa.gov/ha								
12 Pre-developed Volume (ft ³): 35,729 V _{pre} =(1 / 12) * (Item sum of Item 3) * [(Item 11 – Item 9)^2 / ((Item 11 – Item 9 + Item 7)								
13 Post-developed Volume (ft³): 37,779 V _{pre} =(1 / 12) * (Item sum of Item 3) * [(Item 11 – Item 10)^2 / ((Item 11 – Item 10 + Item 8)								
14 Volume Reduction needed to r Vhydro = (Item 13 * 0.95) – Item 12	neet hydrom	odification req	uirement, (ft³)): 160				

Form 4.2-4 Hydromodification Assessment for Time of Concentration (DA 1)

Compute time of concentration for pre and post developed conditions for each DA (For projects using the Hydrology Manual complete the form below)

Je								
Variables	Use additi		loped DA1 here are more ti	than 4 DMA	Use additi		eloped DA1 here are more t	than 4 DMA
	DMA A	DMA B	DMA C	DMA D	DMA A	DMA B	DMA C	DMA D
1 Length of flowpath (ft) Use Form 3-2 Item 5 for pre-developed condition	472				242	78	442	
² Change in elevation (ft)	12.72				3.07	3.2	12.67	
3 Slope (ft/ft), S _o = Item 2 / Item 1	0.027				0.013	0.041	0.029	
4 Land cover	Barren				Indsutrial	Industrial	Barren	
5 Initial DMA Time of Concentration (min) Appendix C-1 of the TGD for WQMP	13				6.5	4	12.5	
6 Length of conveyance from DMA outlet to project site outlet (ft) May be zero if DMA outlet is at project site outlet	19				27	320	20	
7 Cross-sectional area of channel (ft²)	3				3	1	3	
8 Wetted perimeter of channel (ft)	5				5	4	5	
9 Manning's roughness of channel (n)	0.016				0.016	0.016	0.016	
10 Channel flow velocity (ft/sec) $V_{fps} = (1.49 / Item 9) * (Item 7 / Item 8)^{0.67}$ * (Item 3)^0.5	10.9				7.4	7.5	11.2	
11 Travel time to outlet (min) Tt = Item 6 / (Item 10 * 60)	0.029				0.060	0.716	0.030	
Total time of concentration (min) $T_c = Item 5 + Item 11$	13.029				6.560	4.716	12.530	

¹³ Pre-developed time of concentration (min): 13.029 *Minimum of Item 12 pre-developed DMA*

¹⁴ Post-developed time of concentration (min): 4.716 *Minimum of Item 12 post-developed DMA*

¹⁵ Additional time of concentration needed to meet hydromodification requirement (min): 7.662 $T_{C-Hydro} = (Item \ 13 * 0.95) - Item \ 14$

Form 4.2-5 Hydromodification Assessment for Peak Runoff (DA 1)

Compute peak runoff for pre- and post-development	oped conditions							
Variables		Pre-developed DA to Project Outlet (<i>Use additional forms if</i> <i>more than 3 DMA</i>)			Post-developed DA to Project Outlet (<i>Use additional forms if</i> more than 3 DMA)			
			DMA A	DMA B	DMA C	DMA A	DMA B	DMA C
1 Rainfall Intensity for storm duration equal to time of concentration $I_{peak} = 10^{\circ}(LOG Form 4.2-1 Item 4 - 0.7 LOG Form 4.2-4 Item 5 /60)$		0.477			0.464	0.466	0.460	
2 Drainage Area of each DMA (Acres) For DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)			4.46			1.50	0.18	2.77
Ratio of pervious area to total area For DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)			0.8522			0.119	0	1
Pervious area infiltration rate (in/hr) Use pervious area CN and antecedent moisture condition with Appendix C-3 of the TGD for WQMP			0.5			0.5	0.5	0.5
Maximum loss rate (in/hr) F _m = Item 3 * Item 4 Use area-weighted F _m from DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)		0.4261			0.0595	0	0.5	
Peak Flow from DMA (cfs) Qp = Item 2 * 0.9 * (Item 1 - Item 5)		0.21			0.55	0.08	-0.10	
7 Time of concentration adjustment factor for other DMA to		DMA A	n/a			n/a	0.72	1
site discharge point		DMA B	1	n/a		1	n/a	1
Form 4.2-4 Item 12 DMA / Other DMA upstream of s point (If ratio is greater than 1.0, then use maximum	_	DMA C	1		n/a 0.52		0.37	n/a
8 Pre-developed Q_p at T_c for DMA A: 0.21 Q_p = Item θ_{DMAA} + [Item θ_{DMAB} * (Item θ_{DMAA} - Item θ_{DMAB})/(Item θ_{DMAB} - Item θ_{DMAC})* Item θ_{DMAC} * (Item θ_{DMAC} - Item θ_{DMAC})* Item θ_{DMAC} * (Item θ_{DMAA}).	Q_p = Item 6_{DMAB} + 5_{DMAA})/(Item 1_{DMA} [Item 6_{DMAC} * (Iter	developed Q_p at T_c for DMA B: $PPC-developed Q_p$ at T_c for DMA C: $Q_p = Item 6_{DMAA} * (Item 1_{DMAA} - Item 6_{DMAA}) * (Item 1_{DMAC} - Item 6_{DMAC}) * (Item 1_{DMAC} - Item 6_{DMAC}) * (Item $			_{AC} - Item _{РМАС/1}] +			
10 Peak runoff from pre-developed condition of	confluence analys	sis (cfs): 0.21 /	Maximum of	Item 8, 9,	and 10 (includ	ling addition	al forms as	needed)
Post-developed Q_p at T_c for DMA A: 0.53 Same as Item 8 for post-developed values	Post-developed Q_p at T_c for DMA B: 0.54 Same as Item 9 for post-developed values			.54	Post-developed Q_p at T_c for DMA C: 0.52 Same as Item 10 for post-developed values			
Peak runoff from post-developed condition needed)	confluence analy	ysis (cfs): 0.54	Maximum o	f Item 11,	12, and 13 (in	cluding addi	tional forms	as
15 Peak runoff reduction needed to meet Hydronic	romodification Re	equirement (cfs	s): 0.303 (Q _{p-hydro} = (It	tem 14 * 0.95)	– Item 10		

4.3 BMP Selection and Sizing

Complete the following forms for each project site DA to document that the proposed treatment (LID/Bioretention) BMPs conform to the project DCV developed to meet performance criteria specified in the Phase II Small MS4 Permit (WQMP Template Section 4.2). For the LID DCV, the forms are ordered according to hierarchy of BMP selection as required by the Phase II Small MS4 Permit (see Section 5.3 in the TGD for WQMP). The forms compute the following for on-site LID BMP:

- Site Design Measures (Form 4.3-2)
- Retention and Infiltration BMPs (Form 4.3-3) or
- Biotreatment BMPs (Form 4.3-4).

Please note that the selected BMPs may also be used as dual purpose for on-site, hydromodification mitigation and management.

At the end of each form, additional fields facilitate the determination of the extent of mitigation provided by the specific BMP category, allowing for use of the next category of BMP in the hierarchy, if necessary.

The first step in the analysis, using Section 5.3.2 of the TGD for WQMP, is to complete Forms 4.3-1 and 4.3-3) to determine if retention and infiltration BMPs are infeasible for the project. For each feasibility criterion in Form 4.3-1, if the answer is "Yes," provide all study findings that includes relevant calculations, maps, data sources, etc. used to make the determination of infeasibility.

Next, complete Form 4.3-2 to determine the feasibility of applicable Site Design BMPs, and, if their implementation is feasible, the extent of mitigation of the DCV.

If no site constraints exist that would limit the type of BMP to be implemented in a DA, evaluate the use of combinations of LID BMPs, including all applicable Site Design BMPs to maximize on-site retention of the DCV. If no combination of BMP can mitigate the entire DCV, implement the single BMP type, or combination of BMP types, that maximizes on-site retention of the DCV within the minimum effective area.

If the combination of site design, retention and/or infiltration BMPs is unable to mitigate the entire DCV, then the remainder of the volume-based performance criteria that cannot be achieved with site design, retention and/or infiltration BMPs must be managed through biotreatment BMPs. If biotreatment BMPs are used, then they must be sized to provide equivalent effectiveness based on Template Section 4.3.4.

4.3.1 Exceptions to Requirements for Bioretention Facilities

Contingent on a demonstration that use of bioretention or a facility of equivalent effectiveness is infeasible, other types of biotreatment or media filters (such as tree-box-type biofilters or in-vault media filters) may be used for the following categories of Regulated Projects:

- 1) Projects creating or replacing an acre or less of impervious area, and located in a designated pedestrianoriented commercial district (i.e., smart growth projects), and having at least 85% of the entire project site covered by permanent structures;
- 2) Facilities receiving runoff solely from existing (pre-project) impervious areas; and
- 3) Historic sites, structures or landscapes that cannot alter their original configuration in order to maintain their historic integrity.

Form 4.3-1 Infiltration BMP Feasibility (DA 1)
Feasibility Criterion – Complete evaluation for each DA on the Project Site
¹ Would infiltration BMP pose significant risk for groundwater related concerns? Yes □ No ☑ Refer to Section 5.3.2.1 of the TGD for WQMP
If Yes, Provide basis: (attach)
 ² Would installation of infiltration BMP significantly increase the risk of geotechnical hazards? Yes □ No ☑ (Yes, if the answer to any of the following questions is yes, as established by a geotechnical expert): • The location is less than 50 feet away from slopes steeper than 15 percent • The location is less than ten feet from building foundations or an alternative setback. • A study certified by a geotechnical professional or an available watershed study determines that stormwater infiltration would result in significantly increased risks of geotechnical hazards.
If Yes, Provide basis: (attach)
³ Would infiltration of runoff on a Project site violate downstream water rights? Yes □ No ☒
If Yes, Provide basis: (attach)
⁴ Is proposed infiltration facility located on hydrologic soil group (HSG) D soils or does the site geotechnical investigation indicate presence of soil characteristics, which support categorization as D soils? Yes □ No ☑
If Yes, Provide basis: (attach)
⁵ Is the design infiltration rate, after accounting for safety factor of 2.0, below proposed facility less than 0.3 in/hr (accounting for soil amendments)? Yes ☐ No ☑
If Yes, Provide basis: (attach)
6 Would on-site infiltration or reduction of runoff over pre-developed conditions be partially or fully inconsistent with watershed management strategies as defined in the WAP, or impair beneficial uses? See Section 3.5 of the TGD for WQMP and WAP
If Yes, Provide basis: (attach)
⁷ Any answer from Item 1 through Item 3 is "Yes": If yes, infiltration of any volume is not feasible onsite. Proceed to Form 4.3-4, Selection and Evaluation of Biotreatment BMP. If no, then proceed to Item 8 below.
⁸ Any answer from Item 4 through Item 6 is "Yes": If yes, infiltration is permissible but is not required to be considered. Proceed to Form 4.3-2, Site Design BMP. If no, then proceed to Item 9, below.
⁹ All answers to Item 1 through Item 6 are "No": Infiltration of the full DCV is potentially feasible, LID infiltration BMP must be designed to infiltrate the full DCV to the MEP. Proceed to Form 4.3-2, Site Design BMPs.

4.3.2 Site Design BMP

Section E.12.e. of the Small Phase II MS4 Permit emphasizes the use of LID preventative measures; and the use of Site Design Measures reduces the portion of the DCV that must be addressed in downstream BMPs. Therefore, all applicable Site Design Measures shall be provided except where they are mutually exclusive

with each other, or with other BMPs. Mutual exclusivity may result from overlapping BMP footprints such that either would be potentially feasible by itself, but both could not be implemented. Please note that while there are no numeric standards regarding the use of Site Design BMPs. If a project cannot feasibly meet BMP sizing requirements or cannot fully address hydromodification, feasibility of all applicable Site Design BMPs must be part of demonstrating that the BMP system has been designed to retain the maximum feasible portion of the DCV. Complete Form 4.3-2 to identify and calculate estimated retention volume from implementing site design BMP. Refer to Section 5.4 in the TGD for more detailed guidance.

Form 4.3-2 Site Design BMPs (DA 1)					
1 Implementation of Impervious Area Dispersion BMP (i.e. routing runoff from impervious to pervious areas), excluding impervious areas planned for routing to on-lot infiltration BMP: Yes ☐ No ☐ If yes, complete Items 2-5; If no, proceed to Item 6	DA DMA BMP Type	DA DMA BMP Type	DA DMA BMP Type (Use additional forms for more BMPs)		
² Total impervious area draining to pervious area (ft²)					
3 Ratio of pervious area receiving runoff to impervious area					
Retention volume achieved from impervious area dispersion (ft ³) $V = Item2 * Item 3 * (0.5/12)$, assuming retention of 0.5 inches of runoff					
Sum of retention volume achieved from impervious area dispersion (ft³): V _{retention} =Sum of Item 4 for all BMPs					
Implementation of Localized On-lot Infiltration BMPs (e.g. on-lot rain gardens): Yes No If yes, complete Items 7-13 for aggregate of all on-lot infiltration BMP in each DA; If no, proceed to Item 14	DA DMA BMP Type	DA DMA BMP Type	DA DMA BMP Type (Use additional forms for more BMPs)		
7 Ponding surface area (ft²)					
8 Ponding depth (ft) (min. 0.5 ft.)					
9 Surface area of amended soil/gravel (ft²)					
10 Average depth of amended soil/gravel (ft) (min. 1 ft.)					
11 Average porosity of amended soil/gravel					
12 Retention volume achieved from on-lot infiltration (ft³) V _{retention} = (Item 7 *Item 8) + (Item 9 * Item 10 * Item 11)					
13 Runoff volume retention from on-lot infiltration (ft³):	V _{retention} =Sum of It	em 12 for all BMPs			

Form 4.3-2 Site Design BMPs (DA 1)					
Form 4.3-2 cont. Site Design BMPs (DA 1)					
14 Implementation of Street Trees: Yes No If yes, complete Items 14-18. If no, proceed to Item 19	DA DMA BMP Type	DA DMA BMP Type	DA DMA BMP Type (Use additional forms for more BMPs)		
15 Number of Street Trees					
16 Average canopy cover over impervious area (ft²)					
Runoff volume retention from street trees (ft ³) $V_{retention} = Item \ 15 * Item \ 16 * (0.05/12) \ assume \ runoff \ retention \ of \ 0.05 \ inches$					
Runoff volume retention from street tree BMPs (ft^3): $V_{retention} = Sum \ of \ Item \ 17 \ for \ all \ BMPs$					
19 Total Retention Volume from Site Design BMPs: Sum of Items 5, 13 and 18					

4.3.3 Infiltration BMPs

Use Form 4.3-3 to compute on-site retention of runoff from proposed retention and infiltration BMPs. Volume retention estimates are sensitive to the percolation rate used, which determines the amount of runoff that can be infiltrated within the specified drawdown time. The infiltration safety factor reduces field measured percolation to account for potential inaccuracy associated with field measurements, declining BMP performance over time, and compaction during construction. Appendix C of the TGD for WQMP provides guidance on estimating an appropriate safety factor to use in Form 4.3-3.

If site constraints limit the use of BMPs to a single type and implementation of retention and infiltration BMPs mitigate no more than 40% of the DCV, then they are considered infeasible and the Project Proponent may evaluate the effectiveness of BMPs lower in the LID hierarchy of use (Section 5.5 of the TGD for WQMP)

If implementation of infiltrations BMPs is feasible as determined using Form 4.3-1, then LID infiltration BMPs shall be implemented to the MEP (section 4.1 of the TGD for WQMP).

4.3.3.1 Allowed Variations for Special Site Conditions

The bioretention system design parameters of this Section may be adjusted for the following special site conditions:

- 1) Facilities located within 10 feet of structures or other potential geotechnical hazards established by the geotechnical expert for the project may incorporate an impervious cutoff wall between the bioretention facility and the structure or other geotechnical hazard.
- 2) Facilities with documented high concentrations of pollutants in underlying soil or groundwater, facilities located where infiltration could contribute to a geotechnical hazard, and facilities located on elevated plazas or other structures may incorporate an impervious liner and may locate the underdrain discharge at the bottom of the subsurface drainage/storage layer (this configuration is commonly known as a "flow-through planter").
- 3) Facilities located in areas of high groundwater, highly infiltrative soils or where connection of underdrain to a surface drain or to a subsurface storm drain are infeasible, may omit the underdrain.
- 4) Facilities serving high-risk areas such as fueling stations, truck stops, auto repairs, and heavy industrial sites may be required to provide adequate pretreatment to address pollutants of concern unless these high-risk areas are isolated from storm water runoff or bioretention areas with no chance of spill migration.

Form 4.3-3 Infiltration LID BMP - including underground BMPs (DA 1)					
Remaining LID DCV not met by site design BMP (ft ³): 5,557 V _{unmet} = Form 4.2-1 Item 7 - Form 4.3-2 Item19					
BMP Type Use columns to the right to compute runoff volume retention from proposed infiltration BMP (select BMP from Table 5-4 in TGD for WQMP) - Use additional forms for more BMPs	DA 1 DMA A BMP Type Drywell	DA 2 DMA B BMP Type Drywell	DA 3 DMA C BMP Type Basin (Use additional forms for more BMPs)		
2 Infiltration rate of underlying soils (in/hr) See Section 5.4.2 and Appendix C of the TGD for WQMP for minimum requirements for assessment methods	1.12	1.12	1.12		
³ Infiltration safety factor See TGD Section 5.4.2 and Appendix D	2.25	2.25	2.25		
4 Design percolation rate (in/hr) P _{design} = Item 2 / Item 3	0.50	0.50	0.50		
Ponded water drawdown time (hr) Copy Item 6 in Form 4.2-1	48	48	48		
6 Maximum ponding depth (ft) BMP specific, see Table 5-4 of the TGD for WQMP for BMP design details			1		
7 Ponding Depth (ft) $d_{BMP} = Minimum of (1/12*Item 4*Item 5) or Item 6$			1		
⁸ Infiltrating surface area, SA_{BMP} (ft ²) the lesser of the area needed for infiltration of full DCV or minimum space requirements from Table 5.7 of the TGD for WQMP			470		
Amended soil depth, d_{media} (ft) Only included in certain BMP types, see Table 5-4 in the TGD for WQMP for reference to BMP design details					
10 Amended soil porosity					
11 Gravel depth, d_{media} (ft) Only included in certain BMP types, see Table 5-4 of the TGD for WQMP for BMP design details					
12 Gravel porosity					
Duration of storm as basin is filling (hrs) Typical ~ 3hrs			3		
14 Above Ground Retention Volume (ft ³) $V_{retention} = Item 8 * [Item 7 + (Item 9 * Item 10) + (Item 11 * Item 12) + (Item 13 * (Item 4 / 12))]$			470		
15 Underground Retention Volume (ft³) Volume determined using manufacturer's specifications and calculations	4500	720	500		
Total Retention Volume from LID Infiltration BMPs: 5720 (Sum of Items 14 and 15 for all infiltration BMP included in plan) Fraction of DCV achieved with infiltration BMP: 129% Retention% = Item 16 / Form 4.2-1 Item 7					
18 Is full LID DCV retained onsite with combination of hydrologic source control and LID retention/infiltration BMPs? Yes No If yes, demonstrate conformance using Form 4.3-10; If no, then reduce Item 3, Factor of Safety to 2.0 and increase Item 8, Infiltrating Surface Area, such that the portion of the site area used for retention and infiltration BMPs equals or exceeds the minimum effective area thresholds (Table 5-7 of the TGD for WQMP) for the applicable category of development and repeat all above calculations.					

4.3.4 Biotreatment BMP

Biotreatment BMPs may be considered if the full LID DCV cannot be met by maximizing retention and infiltration. A key consideration when using biotreatment BMP is the effectiveness of the proposed BMP in addressing the pollutants of concern for the project (see Table 5-5 of the TGD for WQMP).

Use Form 4.3-4 to summarize the potential for volume based and/or flow based biotreatment options to biotreat the remaining unmet LID DCV. Biotreatment computations are included as follows:

- Use Form 4.3-5 to compute biotreatment in small volume based biotreatment BMP (e.g. bioretention w/underdrains);
- Use Form 4.3-6 to compute biotreatment in large volume based biotreatment BMP (e.g. constructed wetlands);
- Use Form 4.3-7 to compute sizing criteria for flow-based biotreatment BMP (e.g. bioswales)

Form 4.3-4 Selection and Evaluation of Biotreatment BMP (DA 1)							
Form 4.3-4 Sele	ction and Ev	aluation of Biot	treat	tment BMP (DA 1)			
1 Remaining LID DCV not met by sit	List pollutants of concern Copy from Form 2.3-1.						
infiltration, BMP for potential biotro Form 4.2-1 Item 7 - Form 4.3-2 Item 19	` '						
2 Biotreatment BMP Selected		ed biotreatment -6 to compute treated volume	U	Flow-based biotreatment lse Form 4.3-7 to compute treated flow			
(Select biotreatment BMP(s) necessary to ensure all pollutants of concern are addressed through Unit Operations and Processes, described in Table 5-5 of the TGD for WQMP)	Bioretention with Planter box with u Constructed wetla Wet extended dete	underdrain ands ention	☐ Vegetated swale ☐ Vegetated filter strip ☐ Proprietary biotreatment				
				Remaining fraction of LID DCV for sizing flow based biotreatment BMP: % Item 4 / Item 1			
Flow-based biotreatment BMP capacity provided (cfs): Use Figure 5-2 of the TGD for WQMP to determine flow capacity require provide biotreatment of remaining percentage of unmet LID DCV (Item 5), for the project's precipitation zone (Form 3-1 Item 1)							
7 Metrics for MEP determination:							
• Provided a WQMP with the portion of site area used for suite of LID BMP equal to minimum thresholds in Table 5-7 of the TGD for WQMP for the proposed category of development: If maximized on-site retention BMPs is feasible for partial capture, then LID BMP implementation must be optimized to retain and infiltrate the maximum portion of the DCV possible within the prescribed minimum effective area. The remaining portion of the DCV shall then be mitigated using biotreatment BMP.							

Form 4.3-5 Volume Based Biotreatment (DA 1) –						
Bioretention and Planter	Boxes with	Underdraii	ns			
Biotreatment BMP Type (Bioretention w/underdrain, planter box w/underdrain, other comparable BMP)	DA DMA BMP Type	DA DMA BMP Type	DA DMA BMP Type (Use additional forms for more BMPs)			
Pollutants addressed with BMP List all pollutant of concern that will be effectively reduced through specific Unit Operations and Processes described in Table 5-5 of the TGD for WQMP						
2 Amended soil infiltration rate <i>Typical</i> ~ 5.0						
Amended soil infiltration safety factor Typical ~ 2.0						
4 Amended soil design percolation rate (in/hr) P _{design} = Item 2 / Item 3						
⁵ Ponded water drawdown time (hr) <i>Copy Item 6 from Form 4.2-1</i>						
6 Maximum ponding depth (ft) see Table 5-6 of the TGD for WQMP for reference to BMP design details						
Ponding Depth (ft) d_{BMP} = Minimum of (1/12 * Item 4 * Item 5) or Item 6						
8 Amended soil surface area (ft²)						
Amended soil depth (ft) see Table 5-6 of the TGD for WQMP for reference to BMP design details						
10 Amended soil porosity, n						
11 Gravel depth (ft) see Table 5-6 of the TGD for WQMP for reference to BMP design details						
12 Gravel porosity, n						
Duration of storm as basin is filling (hrs) Typical ~ 3hrs						
14 Biotreated Volume (ft ³) V _{biotreated} = Item 8 * [(Item 7/2) + (Item 9 * Item 10) + (Item 11 * Item 12) + (Item 13 * (Item 4 / 12))]						
Total biotreated volume from bioretention and/or planter box Sum of Item 14 for all volume-based BMPs included in this form	with underdrains B	MP:				

Form 4.3-6 Volume Bas	ed Biotre	atment ([DA 1) –		
Constructed Wetlands	and Exter	nded Dete	ention		
Biotreatment BMP Type Constructed wetlands, extended wet detention, extended dry detention, or other comparable proprietary BMP. If BMP includes multiple modules (E.g. forebay and main basin), provide separate estimates for storage	DA BMP Tyl	DMA pe	DA DMA BMP Type (Use additional forms for more BMPs)		
and pollutants treated in each module.	Forebay	Basin	Forebay	Basin	
Pollutants addressed with BMP forebay and basin List all pollutant of concern that will be effectively reduced through specific Unit Operations and Processes described in Table 5-5 of the TGD for WQMP					
2 Bottom width (ft)					
3 Bottom length (ft)					
4 Bottom area (ft²) A _{bottom} = Item 2 * Item 3					
5 Side slope (ft/ft)					
6 Depth of storage (ft)					
7 Water surface area (ft²) A _{surface} =(Item 2 + (2 * Item 5 * Item 6)) * (Item 3 + (2 * Item 5 * Item 6))					
Storage volume (ft³) For BMP with a forebay, ensure fraction of total storage is within ranges specified in BMP specific fact sheets, see Table 5-6 of the TGD for WQMP for reference to BMP design details V = Item 6 / 3 * [Item 4 + Item 7 + (Item 4 * Item 7)^0.5]					
9 Drawdown Time (hrs) Copy Item 6 from Form 2.1					
Outflow rate (cfs) $Q_{BMP} = (Item 8_{forebay} + Item 8_{basin}) / (Item 9 * 3600)$					
11 Duration of design storm event (hrs)					
12 Biotreated Volume (ft³) V _{biotreated} = (Item 8 _{forebay} + Item 8 _{basin}) +(Item 10 * Item 11 * 3600)					
Total biotreated volume from constructed wetlands, extended (Sum of Item 12 for all BMP included in plan)	dry detention, or	extended wet de	etention :		

Form 4.3-7 Flow Base	d Biotreatm	nent (DA 1)	
Biotreatment BMP Type Vegetated swale, vegetated filter strip, or other comparable proprietary BMP	DA DMA BMP Type	DA DMA BMP Type	DA DMA BMP Type (Use additional forms for more BMPs)
Pollutants addressed with BMP List all pollutant of concern that will be effectively reduced through specific Unit Operations and Processes described in TGD Table 5-5			
Plow depth for water quality treatment (ft) BMP specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details			
Bed slope (ft/ft) BMP specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details			
4 Manning's roughness coefficient			
5 Bottom width (ft) b _w = (Form 4.3-5 Item 6 * Item 4) / (1.49 * Item 2 ^{^1.67} * Item 3 ^{^0.5})			
6 Side Slope (ft/ft) BMP specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details			
7 Cross sectional area (ft²) A = (Item 5 * Item 2) + (Item 6 * Item 2^2)			
Water quality flow velocity (ft/sec) V = Form 4.3-5 Item 6 / Item 7			
9 Hydraulic residence time (min) Pollutant specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details			
Length of flow based BMP (ft) L = Item 8 * Item 9 * 60			
11 Water surface area at water quality flow depth (ft²) $SA_{top} = (Item 5 + (2 * Item 2 * Item 6)) * Item 10$			

4.3.5 Conformance Summary

Complete Form 4.3-8 to demonstrate how on-site LID DCV is met with proposed site design, infiltration, and/or biotreatment BMP. The bottom line of the form is used to describe the basis for infeasibility determination for on-site LID BMP to achieve full LID DCV, and provides methods for computing remaining volume to be addressed in an alternative compliance plan. If the project has more than one outlet, then complete additional versions of this form for each outlet.

Form 4.3-8 Conformance Summary and Alternative Compliance Volume Estimate (DA 1)
1 Total LID DCV for the Project DA-1 (ft³): Copy Item 7 in Form 4.2-1
2 On-site retention with site design BMP (ft³): Copy Item18 in Form 4.3-2
3 On-site retention with LID infiltration BMP (ft³): Copy Item 16 in Form 4.3-3
4 On-site biotreatment with volume based biotreatment BMP (ft³): Copy Item 3 in Form 4.3-4
Flow capacity provided by flow based biotreatment BMP (cfs): Copy Item 6 in Form 4.3-4
 LID BMP performance criteria are achieved if answer to any of the following is "Yes": Full retention of LID DCV with site design or infiltration BMP: Yes No If yes, sum of Items 2, 3, and 4 is greater than Item 1 Combination of on-site retention BMPs for a portion of the LID DCV and volume-based biotreatment BMP that address all pollutants of concern for the remaining LID DCV: Yes No If yes, a) sum of Items 2, 3, 4, and 5 is greater than Item 1, and Items 2, 3 and 4 are maximized; or b) Item 6 is greater than Form 4.35 Item 6 and Items 2, 3 and 4 are maximized On-site retention and infiltration is determined to be infeasible; therefore biotreatment BMP provides biotreatment for all pollutants of concern for full LID DCV: Yes No If yes, Form 4.3-1 Items 7 and 8 were both checked yes
If the LID DCV is not achieved by any of these means, then the project may be allowed to develop an alternative compliance plan. Check box that describes the scenario which caused the need for alternative compliance:
 Combination of Site Design, retention and infiltration, , and biotreatment BMPs provide less than full LID DCV capture: Checked yes if Form 4.3-4 Item 7is checked yes, Form 4.3-4 Item 6 is zero, and sum of Items 2, 3, 4, and 5 is less than Item 1. If so, apply water quality credits and calculate volume for alternative compliance, Valt = (Item 1 – Item 2 – Item 3 – Item 4 – Item 5) * (100 - Form 2.4-1 Item 2)%
 Facilities, or a combination of facilities, of a different design than in Section E.12.e.(ii)(f) may be permitted if all of the following Phase II Small MS4 General Permit 2013-0001-DWQ 55 February 5, 2013 measures of equivalent effectiveness are demonstrated: Equal or greater amount of runoff infiltrated or evapotranspired; Equal or lower pollutant concentrations in runoff that is discharged after biotreatment; Equal or greater protection against shock loadings and spills; Equal or greater accessibility and ease of inspection and maintenance.

4.3.6 Hydromodification Control BMP

Use Form 4.3-9 to compute the remaining runoff volume retention, after Site Design BMPs are implemented, needed to address hydromodification, and the increase in time of concentration and decrease in peak runoff necessary to meet targets for protection of waterbodies with a potential hydromodification. Describe the proposed hydromodification treatment control BMP. Section 5.6 of the TGD for WQMP provides additional details on selection and evaluation of hydromodification control BMP.

Form 4.3-9	Hydro	omodification Control BMPs (DA 1)		
Volume reduction needed for hydromodification performance criteria (ft³): 5,557 (Form 4.2-2 Item 4 * 0.95) – Form 4.2-2 Item 1		On-site retention with site design and infiltration, BMP (ft³): 5,720 Sum of Form 4.3-8 Items 2, 3, and 4. Evaluate option to increase implementation of on-site retention in Forms 4.3-2, 4.3-3, and 4.3-4 in excess of LID DCV toward achieving hydromodification volume reduction		
Remaining volume for hydromodification volume capture (ft³): 0 Item 1 – Item 2	⁴ Volum	e capture provided by incorporating additional on-site BMPs (ft³): 100%		
5 Is Form 4.2-2 Item 11 less than or equal to 5%: Yes ☑ No ☐ If yes, hydromodification performance criteria is achieved. If no, select one or more mitigation options below: • Demonstrate increase in time of concentration achieved by proposed LID site design, LID BMP, and additional on-site BMP ☐ • Increase time of concentration by preserving pre-developed flow path and/or increase travel time by reducing slope at increasing cross-sectional area and roughness for proposed on-site conveyance facilities ☐				
Form 4.2-2 Item 12 less than or equal to 5%: Yes ☑ No ☐ If yes, hydromodification performance criteria is achieved. If no, select one or more mitigation options below: • Demonstrate reduction in peak runoff achieved by proposed LID site design, LID BMPs, and additional on-site retention BMPs ☐				

4.4 Alternative Compliance Plan (if applicable)

Describe an alternative compliance plan (if applicable) for projects not fully able to infiltrate, or biotreat the DCV via on-site LID practices. A project proponent must develop an alternative compliance plan to address the remainder of the LID DCV. Depending on project type some projects may qualify for water quality credits that can be applied to reduce the DCV that must be treated prior to development of an alternative compliance plan (see Form 2.4-1, Water Quality Credits). Form 4.3-9 Item 8 includes instructions on how to apply water quality credits when computing the DCV that must be met through alternative compliance.

Alternative Designs — Facilities, or a combination of facilities, of a different design than in Permit Section E.12.e.(ii)(f) may be permitted if all of the following measures of equivalent effectiveness are demonstrated:

- 1) Equal or greater amount of runoff infiltrated or evapotranspired;
- 2) Equal or lower pollutant concentrations in runoff that is discharged after biotreatment;
- 3) Equal or greater protection against shock loadings and spills;
- 4) Equal or greater accessibility and ease of inspection and maintenance.

The Project Proponent will need to obtain written approval for an alternative design from the Lahontan Regional Water Board Executive Officer (see Section 6 of the TGD for WQMP).

Section 5 Inspection and Maintenance Responsibility for Post Construction BMP

All BMPs included as part of the project WQMP are required to be maintained through regular scheduled inspection and maintenance (refer to Section 8, Post Construction BMP Requirements, in the TGD for WQMP). Fully complete Form 5-1 summarizing all BMP included in the WQMP. Attach additional forms as needed. The WQMP shall also include a detailed Operation and Maintenance Plan for all BMP and a Maintenance Agreement. The Maintenance Agreement must also be attached to the WQMP.

Note that at time of Project construction completion, the Maintenance Agreement must be completed, signed, notarized and submitted to the County Stormwater Department

	Form 5-1 BMP Inspection and Maintenance (use additional forms as necessary)						
ВМР	Reponsible Party(s)	Minimum Frequency of Activities					
N-1 Education for property owners, tenants, and occupants	Owner	The property owner will provide BMP educational information materials to all employees or occupants of site.	As needed				
N2- Activity Restrictio ns	Owner	Activity restrictions such as "No littering" signs to prevent pollution to stormwater BMP.	As needed				
N3- Landscape Managem ent	Owner	Install irrigation system with timing devices to avoid overwatering. Repair as needed.	As needed.				
N4-BMP Maintance	Owner	Inspect, clean, repair, and maintain BMP as indicated in BMP operations and maintance guide.	Monthly				

N11-Litter Control	Owner	Inspect and clean site for trash and debris	Weekly
N12- Employee Training	Owner	Educational materials on general housekeeping pratices for the protection of storm water quality shall be provided to all employees	Yearly
N15 Vaccum Sweep Private Streets and Parking Lots	Owner	Parking lots shall be swept and vaccumed regularly.	Weekly

Section 6 WQMP Attachments

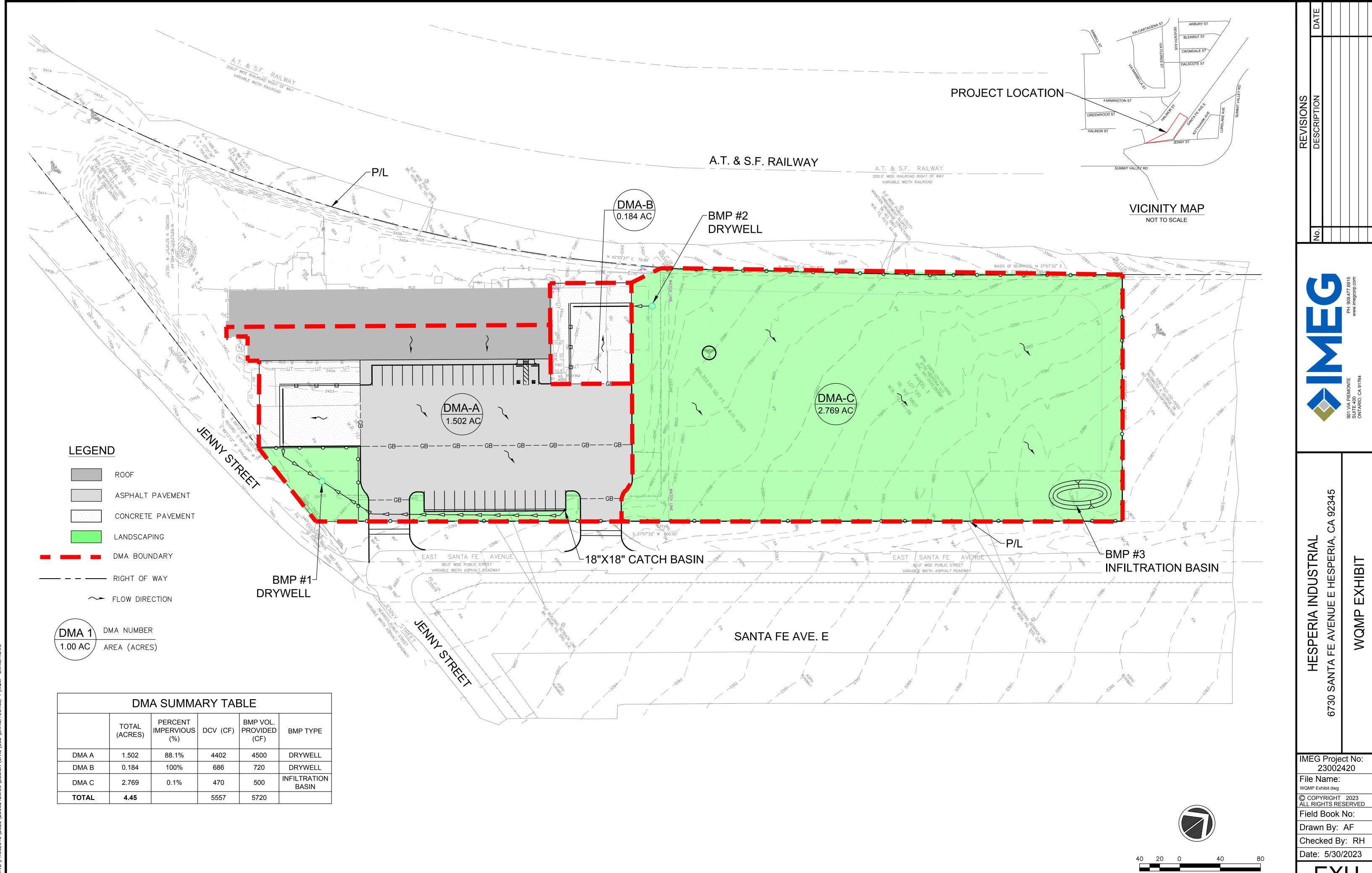
6.1. Site Plan and Drainage Plan

Include a site plan and drainage plan sheet set containing the following minimum information:

- Project location
- Site boundary
- Land uses and land covers, as applicable
- Suitability/feasibility constraints
- Structural Source Control BMP locations
- Site Design Hydrologic Source Control BMP locations
- LID BMP details
- Drainage delineations and flow information
- Drainage connections

6.2 Electronic Data Submittal

Minimum requirements include submittal of PDF exhibits in addition to hard copies. Format must not require specialized software to open. If the local jurisdiction requires specialized electronic document formats (as described in their Local Implementation Plan), this section will describe the contents (e.g., layering, nomenclature, geo-referencing, etc.) of these documents so that they may be interpreted efficiently and accurately.

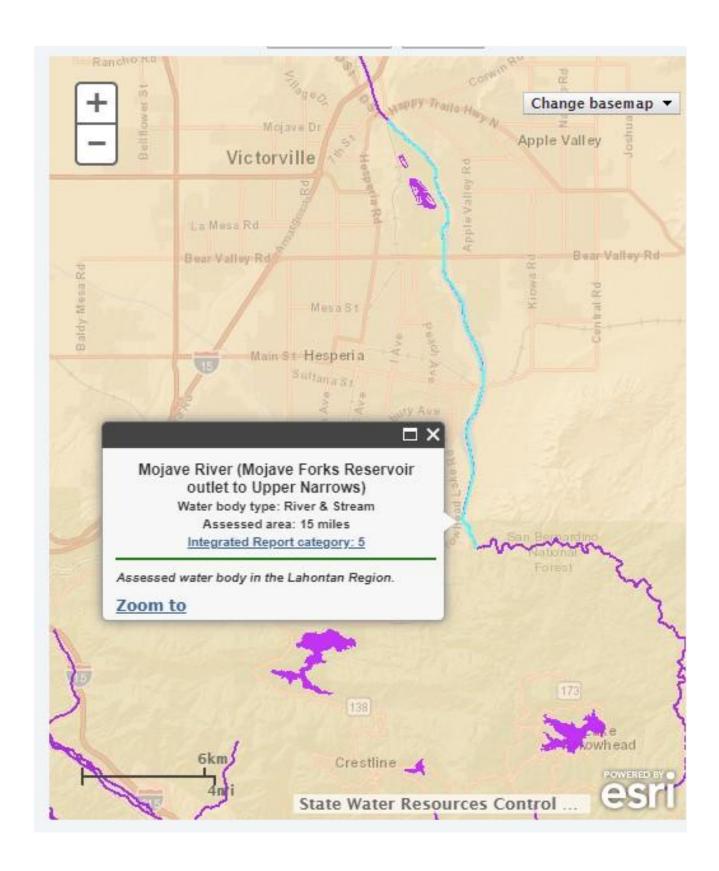

6.3 Post Construction

Attach all O&M Plans and Maintenance Agreements for BMP to the WQMP.

6.4 Other Supporting Documentation

- BMP Educational Materials
- Activity Restriction C,C&R's & Lease Agreements

Appendix A: Vicinity Map, WQMP Site Plan, and Receiving Waters Map


SCALE: 1" = 40'

6730 SANTA FE AVE EAST, HESPERIA, CA

VICINITY MAP

5/24/23 \\FILES\ACTIVE\PROJECTS\2023\23002420.00\DESIGN\CIVIL\C3D\EXHIBITCONGEPT\WQMP VICINITY MAP EXHIBIT.DWG

901 VIA PIEMONTE SUITE 400 ONTARIO, CA 91764

Receiving Waters Map

Appendix B: Supporting detail related to Hydrologic Conditions of Concern

Table 3-2. Pollutants of Concern for Project Categories and Land Uses

Regulated Project		General Pollutant Categories							
Categories and/or Project Features	Pathogens (Bacterial / Virus)	Metals	Nutrients / Noxious Aquatic Plants	Organic Compounds	Pesticides / Herbicides	Sediments / Total Suspended Solids / pH	Trash & Debris	Oxygen Demanding Compounds	Oil & Grease
Detached Residential Development	E	N	E	E ⁽¹⁾	E	E	E	E ⁽¹⁾	E
Attached Residential Development	E	N	E	E ⁽¹⁾	E	E	E	E	E ⁽²⁾
Commercial / Industrial Development	E ⁽³⁾	E	E ⁽¹⁾	E ^(1,4)	E	E ⁽¹⁾	E	E ⁽¹⁾	E
Automotive Repair Shops	N	E	N	E ^(1,3,4)	Е	N	Е	E ⁽¹⁾	Е
Restaurants (>5,000 ft ²)	E	E ⁽²⁾	E ⁽¹⁾	E ⁽¹⁾	E	E ⁽¹⁾⁽²⁾	Е	N	E
Hillside Development (>5,000 ft²)	E	N	E	E ⁽¹⁾	E	E	E	E	E
Parking Lots (>5,000 ft ²)	E ⁽⁵⁾	Е	E ⁽¹⁾	E ⁽³⁾	E	E ⁽¹⁾	Е	E ⁽¹⁾	Е
Retail Gasoline Outlets	N	E	N	E ⁽³⁾	E	N	E	E ⁽¹⁾	E

E = Expected to be a concern in stormwater runoff

3.3.2 Expected Pollutants of Concern

The WQMP must list all identified pollutants of concern that are expected to be generated by the project and compare this with the list of pollutants for which the receiving waters are impaired. To identify pollutants of concern in receiving waters, each project proponent shall reference Table 3-2 and Table 3-3 to determine if any pollutants expected to be generated by the project are also listed as causing impairments of downstream receiving waters for the project.

3.3.3 Receiving Water Impairments and TMDLs

For each of the proposed project discharge points, the Regulated Project proponent shall identify the proximate receiving water for each point of discharge and all downstream receiving waters, using the Watershed Geodatabase. For all downstream receiving waters identified, determine if they are listed on the most recent list of CWA Section 303(d) impaired

N = Not expected to be a concern in stormwater runoff

⁽¹⁾ Expected pollutant if landscaping exists on-site; otherwise not expected.

⁽²⁾ Expected pollutant if the project includes uncovered parking areas; otherwise not expected

⁽³⁾ Including petroleum hydrocarbons

⁽⁴⁾ Including solvents

⁽⁵⁾ Bacterial indicators are routinely detected in pavement runoff

Appendix C: Educational Material

STORMWATER POLLUTION PREVENTION

Best Management Practices for San Bernardino County Homeowner's Associations, Property Managers and Property Owners

Your Guide To Maintaining Water Friendly Standards In Your Community

TABLE OF CONTENTS

General HOA	1
Commercial Trash Enclosures Requirements	2
Sidewalk/Parking Lot Cleaning	3
Surface Cleaning	4
Concrete + Sidewalk Repair	5
Working Outdoors and Handling Spills	6
Sustainable Practices for Landscape Maintenance	7
Pool Maintenance	8
HHW Resources	9
Pet Waste Disposal Resources	10
Residents	11
Paint	12
Vehicle Cleaning and Maintenance	13
Pick Up After Your Pet	14
Get In Touch With Us Online	15

GENERAL HOA



COMMERCIAL TRASH ENCLOSURES REQUIREMENTS

FOLLOW THESE REQUIREMENTS TO KEEP OUR WATERWAYS CLEAN

In San Bernardino County, stormwater pollution is caused by food waste, landscape waste, chemicals, and other debris that are washed into storm drains and end up in our waterways - untreated! You can be part of the solution by maintaining a water-friendly trash enclosure.

PUT TRASH INSIDE

Place trash inside the bin (preferably in sealed bags).

CLOSE THE LID

Prevent rain from entering the bin in order to avoid leakage of polluted water runoff.

KEEP TOXICS OUT

NO:

- Paint
- Grease
- Fats
- Used Oils
- Batteries
- Electronics
- Fluorescent
- Lights

These items should be disposed of at a local hazardous waste collection center

SWEEP FREQUENTLY

Sweep trash enclosure areas frequently, instead of hosing them down, to prevent polluted water from flowing into the streets and storm drains.

FIX <u>LEA</u>KS

Address trash bin leaks immediately by using dry clean-up methods and reporting to your waste hauler to receive a replacement.

CONSTRUCT ROOF

Construct a solid cover roof over the existing trash enclosure structure to prevent rainwater from coming into contact with trash and garbage. Check with your local City/County for Building Codes.

To report illegal dumping or toxic spills, call (877) WASTE18 or visit sbcountystormwater.org/report

To dispose of hazardous waste, call 1 (800) OILYCAT

SIDEWALK + CLEANING PARKING LOT CLEANING

Littering and vehicle use can leave behind pollutants on sidewalks, plazas, and other pedestrian traffic areas. Properly inspecting, cleaning, and repairing pedestrian areas and HOA-owned surfaces and structures can reduce pollutant runoff from these areas.

Maintain these areas by following the best management practices listed below.

LITTER CONTROL

- Enforce anti-litter laws.
- Place trash cans in busy, high pedestrian traffic areas of the community, at recreational facilities, and at community events.
- Ensure trash cans remain covered at all times.
- Clean out trash cans frequently to prevent leaking/spillage or overflow.
- TIP: POST "NO LITTERING" SIGNS.

SIDEWALKS AND PLAZAS

- when cleaning sidewalks and plazas, use dry methods such as sweeping, vacuuming, and using backpack blowers whenever practical, rather than hosing, pressure washing, or steam cleaning.
- DO NOT sweep or blow material into the street or gutter.

PARKING AREAS, DRIVEWAYS, DRIVE-THRU

- Sweep or vacuum parking facilities on a regular basis.
- Sweep all parking lots at least once before the onset of the wet season.
- Use absorbents to pick up oil; then dry sweep.
- Appropriately dispose of spilled materials and absorbents.
- Consider increasing sweeping frequency based on factors such as traffic volume, land use, field observations of sediment and trash accumulation, and proximity to water courses.

TIP: IF WATER MUST BE USED, BLOCK STORM DRAIN INLETS TO CONTAIN RUNOFF. WHEN DONE, DISCHARGE WASH WATER TO LANDSCAPING OR CONTAIN AND DISPOSE OF PROPERLY.

To report illegal dumping or toxic spills, call **(877) WASTE18** or visit **sbcountystormwater.org/report**

To dispose of hazardous waste, call 1 (800) OILYCAT

SURFACE CLEANING

Proper inspection, cleaning, and repair of pedestrian areas and HOA-owned surfaces and structures can reduce pollutant runoff from these areas. Discharges of wash water to the stormwater drainage system from cleaning or hosing of impervious surfaces is prohibited.

Maintain these areas by following the best management practices listed below.

WHEN CLEANING BUILDING SURFACES

If water must be used, block storm drain inlets and contain runoff.

Discharge wash water to landscaping or contain and dispose of properly.

BUILDING SURFACES, DECKS, ETC., WITHOUT LOOSE PAINT

 Use high-pressure water, no soap.

UNPAINTED BUILDING SURFACES, WOOD DECKS, ETC.

 If using a biodegradable or another cleaning agent to remove deposits, contain and dispose of them properly.

GRAFFITI REMOVAL

- Avoid graffiti abatement activities during rain events.
- Protect nearby storm drain inlets prior to removing graffiti from walls, signs, sidewalks, or other structures needing graffiti abatement. Clean up afterward by sweeping or vacuuming thoroughly, and/or by using absorbent and properly disposing of the absorbent.
- Take care when disposing of water since it may need to be disposed of as hazardous waste.

TIP: CONSIDER USING A WATERLESS AND NON-TOXIC CHEMICAL CLEANING METHOD FOR GRAFFITI REMOVAL (E.G. GELS OR SPRAY COMPOUNDS).

To report illegal dumping or toxic spills, call **(877) WASTE18** or visit **sbcountystormwater.org/report**

To dispose of hazardous waste, call 1 (800) OILYCAT

CONCRETE REPAIR + SIDEWALK REPAIR

Properly inspecting and repairing pedestrian areas and HOA-owned surfaces and structures can reduce pollutant runoff.

Maintain these areas by following the best management practices listed below.

CONCRETE INSTALLATION + REPAIR

- Avoid mixing excess amounts of fresh concrete or cement mortar on-site. Only mix what is needed for the job.
- Wash concrete trucks off-site or in designated areas on-site, such that there is no discharge of concrete wash water into storm drain inlets, open ditches, streets, or other stormwater conveyance structures.
- Store dry and wet concrete materials under cover, protected from rainfall and runoff, and away from drainage areas. After the job is complete, remove temporary stockpiles such as asphalt materials and sand as soon as possible.
- Return leftover materials to the transit mixer. Dispose of small amounts of excess concrete, grout, and mortar in the trash.
- When washing concrete to remove fine particles and expose the aggregate, contain the wash water for proper disposal.
- DO NOT wash sweepings from exposed aggregate concrete into the street or storm drain. Collect and return sweepings to aggregate base stockpile, or dispose of in the trash.
- Protect applications of fresh concrete from rainfall and runoff until the material has hardened.

SIDEWALK REMOVAL + REPAIR

- Schedule surface removal activities for dry weather.
- Avoid creating excess dust when breaking asphalt or concrete.

PROTECT NEARBY STORM DRAIN INLETS

- Prior to breaking up asphalt or concrete, take measures such as placing straw waddles or gravel bags around inlets.
 Clean afterward by sweeping up material.
- During the sawing operation, cover each storm drain inlet with filter fabric and contain the slurry by placing straw bales, sandbags, or gravel dams around the inlets.

CLEAN UP

- Designate an area for clean-up and proper disposal of excess materials.
- Remove and recycle as much of the broken pavement as possible.
- When making saw cuts in the pavement, use as little water as possible. After the liquid drains, shovel or vacuum the slurry, remove it from the site, and dispose of it properly.
- Once dry sweeping is complete, the area may be hosed down if needed.
- Discharge wash water to landscaping, pump to the sanitary sewer if permitted to do so, or contain and dispose of properly.
- ALWAYS dry sweep first with a street sweeper or vacuum truck to clean up tracked dirt. DO NOT dump vacuumed liquid in storm drains.

To report illegal dumping or toxic spills, call **(877) WASTE18** or visit **sbcountystormwater.org/report**

To dispose of hazardous waste, call 1 (800) OILYCAT

When Working Outdoors

CONTROL • CONTROL

Locate the nearest storm drain and ensure nothing can enter or be discharged into it.

Ubique el desagüe de aguas pluviales más cercano y asegúrese de que nada pueda ingresar a éste ni descargarse en él.

CONTAIN • CONTENER

Isolate your area to prevent material from potentially flowing or being blown away.

Aísle su área para evitar que el material pueda discurrirse o ser llevado por el viento.

CAPTURE • CAPTURAR

Sweep up debris and place it in the trash. Clean up spills with an absorbent material (e.g. kitty litter) or vacuum with a Wet-Vac and dispose of properly.

Recoja los restos y colóquelos en la basura. Limpie los derrames con un material absorbente (como la arena para gatos) o aspírelos con una Wet-Vac (aspiradora de humedad) y deséchelos correctamente.

To report illegal dumping or toxic spills, call (877) WASTE18 or visit sbcountystormwater.org/report

To dispose of hazardous waste, call 1 (800) OILYCAT

DISCHARGE TO THE STORM DRAIN, ACCIDENTAL OR NOT, COULD LEAD TO ENFORCEMENT ACTIONS AND FINES

Sustainable Practices for Landscape Maintenance

Your contributions make a difference in the way you maintain your yard. Learn how to truly be a "green" thumb and prevent stormwater pollution.

Recycle Yard Waste

Yard waste, like grass and leaves, can block the storm drain or carry harmful chemicals into it.

- Recycle yard waste by placing them into your greenwaste container.
- Do not blow, sweep, rake, or hose yard waste into the street or catch basin.
- Try grasscycling by leaving clippings on the lawn when mowing.

For more information, visit www.calrecycle.ca.gov/organics/grasscycling.

Use Safe Products

Fertilizers, herbicides, and pesticides are often carried into the storm drain by sprinkler runoff.

- Use natural and non-toxic alternatives as often as possible.
- Spot-apply, rather than blanketing entire areas.

Apply chemicals directly to the area that needs treatment.

- Read the product label and use only as directed.
- Never apply before a rain.

Use Water Wisely

Conserving water minimizes the amount of urban runoff going into the street.

 Control the amount of water and direction of sprinklers.

The average lawn only needs about an inch of water a week or 10 to 20 minutes of watering.

 Periodically inspect and fix sprinklers for leaks.

> Realign sprinkler heads to make sure water is distributed onto the lawn and not onto the sidewalk.

Plant native vegetation to reduce the need of water.

HOMEOWNERS

Keep these tips in mind when hiring professional landscapers and remind them as necessary.

Leftover pesticides, fertilizers, and herbicides contaminate landfills and should be disposed of through a Household Hazardous Waste Center*.

For more information on proper disposal, call 1 (800) OILYCAT or visit tootoxictotrash.com.

*FREE for San Bernardino County residents. Businesses can call for cost inquiries and to schedule an appointment.

To report illegal dumping or toxic spills, call (877) WASTE18 or visit sbcountystormwater.org/report

To dispose of hazardous waste, call 1 (800) OILYCAT

POOL MAINTENANCE

When discharged to the street, gutters, or storm drains, pool chemicals and filter solids

DO NOT GET TREATED before reaching the Santa Ana River.

FOLLOW THESE TIPS FOR PROPER DISPOSAL OF POOL WATER:

✓ **De-chlorinate** – Chlorine naturally dissipates over time and should be completely gone if the water is left standing for 3-5 days. Use a pool testing kit prior to discharge to ensure the concentration of chlorine is zero.

Check pH – determine the pH of the pool water before discharging on your own or ask your pool maintenance company to check it for you. It should be between 6.5 and 8.5.

- ✓ Free and clear Make certain the water is free of any discoloration, dirt or algae.
- ✓ Use your grass When discharging to a grassy area, the flow should be controlled so it doesn't cause any erosion problems or enter a neighbor's property.
- Avoid metal-based algaecides (i.e. copper sulfate). If used, empty your pool or spa into the sewer.

Chlorine, acid cleaning chemicals and metal-based algaecides used in pools can kill beneficial organisms in the food chain and pollute our drinking water.

WHEN ACID CLEANING OR OTHER CHEMICAL CLEANING:

Neutralize the pool water to pH of 6.5 to 8.5, then discharge to the sewer.

WHEN DRAINING YOUR POOL:

- Before draining your pool, contact your city for approval to drain your pool water into the sewer or storm drain.
- Saltwater pools must only be drained to the sewer or hauled away. Check with your pool maintenance company for draining requirements.

FOR SWIMMING POOL AND SPA FILTER BACKWASH:

Dispose of solids into trash bag, then wash filter into a landscape area. Discharge water to the sewer, never to the storm drain. Many pools are plumbed to discharge directly to the sanitary sewer but call your plumber or pool maintenance company if you are unsure.

What's the difference between discharging to the sewer vs storm drain?

WHERE WATER
MEETS COMMUNITY

To report illegal dumping or toxic spills, call (877) WASTE18 or visit sbcountystormwater.org/report

To dispose of hazardous waste, call 1 (800) OILYCAT

HHW RESOURCES

Here are some resources with useful information for your HOA residents. You may add these free resources to your newsletters, websites, and any other communication channels you use.

HHW Materials Insert

Ideal for newsletters

HHW Locations Insert

Ideal for newsletters

HHW Flyer
Ideal for printing

PET WASTE DISPOSAL RESOURCES

Here are some resources with useful information for your HOA residents. You may add these free resources to your newsletters, websites, and any other communication channels you use.

FREE DOGGIE WASTE BAG
FOR YOU AND YOUR FRIEND

Step 1 Visit FreeDoggieBags.com
Step 2 Request a FREE canister from us
Step 3 Send a FREE canister to a friend
Step 4 Use your canister to pick up after your dog anytime, anyplace!

Thanks for being a responsible pet owner and contributing to a beautiful San Bernardino County.

Spot's Trash Match-Up Game Insert

Ideal for newsletters

Dog Waste Insert Ideal for newsletters

Dog Waste Insert Ideal for newsletters

RESIDENTS

WE DID IT OURSELVES AND WE DID IT RIGHT

WHEN PAINTING YOUR HOME, PROTECT YOUR FAMILY AND COMMUNITY.

PAINTS that are water-based are less toxic and should be used whenever possible.

BRUSHES with water-based paint should be washed in the sink. Those with oil-based paint should be cleaned with paint thinner.

SAFELY dispose of unwanted paint and paint thinner at a household hazardous waste collection center near you.

For a list of acceptable materials, location information, and hours of operation, visit TooToxicToTrash.com.

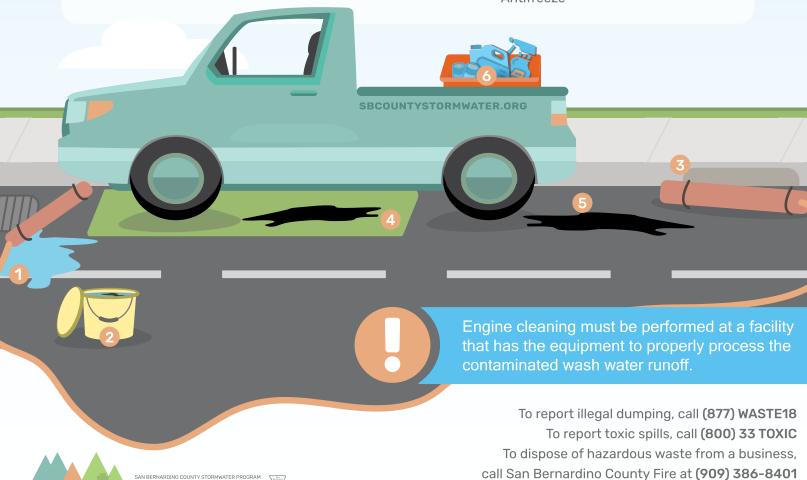
To report illegal dumping or toxic spills, call (877) WASTE18 or visit sbcountystormwater.org/report

To dispose of hazardous waste, call 1 (800) OILYCAT

Vehicle Cleaning and Maintenance

Discharge into storm drain, accidental or not, can lead to enforcement actions which can include fines.

Follow these best practices to prevent polluted water and other materials from flowing into the street, gutter, and storm drain. Residents should first check HOA rules to see if vehicle maintenance is allowed on site.


Wash Water Disposal

- Wash in a contained area that has been bermed up to contain the wash water.
- If washing items contaminated by hazardous materials, ensure the wash water is collected and hauled off-site for proper disposal.
- Locate the nearest storm drain and place a barrier in front to ensure nothing can enter or be discharged into it.

Hazardous Waste Spill Clean-Up and Disposal

- Use a tarp to catch drips and contain spills.
- If a spill occurs, use absorbent material like kitty litter or absorbent pads to soak up the spill, then place in a bucket and properly dispose of at a local household hazardous waste facility.
- Oroperly dispose of toxic materials at your local household hazardous waste facility.

Motor Oil Batteries
Oil Filters Gasoline
Antifreeze

BAG IT AND TRASH IT! — Steps and Tips —

WHY SHOULD I PICK UP?

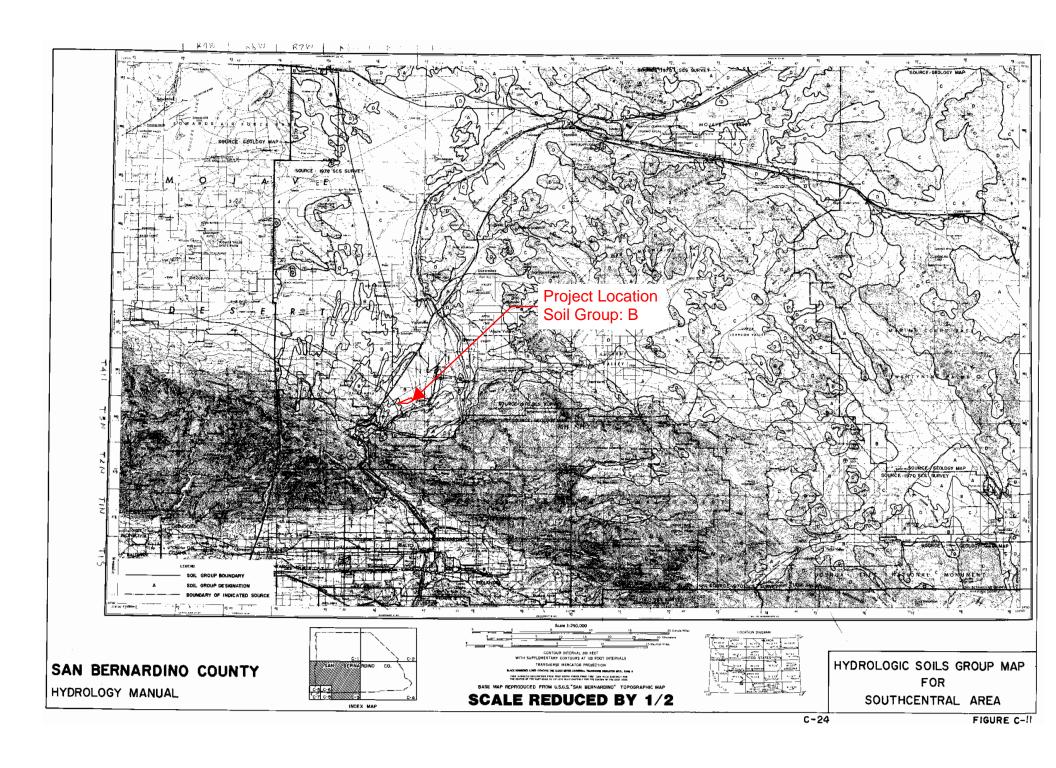
Dog waste can infect children and adults with disease-causing bacteria and parasites.

Your dog can get infected from the waste of other dogs.

Dog waste can affect the quality of our rivers and oceans and make the water

- **Step 1:** Keep a supply of bags tied to your dog leash.
- Step 2: Bag the poop and tie the bag.
- Step 3: Dispose of the tied bag properly by throwing it into a trash can.

Scan code for a FREE CANISTER


freedoggiebags.com

GET IN TOUCH WITH US ONLINE!

- Website sbcountystormwater.org
- Facebook facebook.com/sbcountystormwater
- Instagram
 instagram.com/sbcountystormwater
- Youtube youtube.com/sbcountystormwater
- Report Pollution Violations sbcountystormwater.org/report
- **Email** *info@sbcountystormwater.org*

Appendix D: Education Materials

LIMITED GEOTECHNICAL ENGINEERING INVESTIGATION

PROPOSED LOADING DOCKS AND PARKING LOT 6730 SANTA FE AVENUE E HESPERIA, CALIFORNIA

> SALEM PROJECT NO. 3-223-0381 MAY 18, 2023

PREPARED FOR:

MR. GREG REITZ CREDE GROUP 18301 VON KARMAN AVENUE, SUITE 510 IRVINE, CA 92612

PREPARED BY:

SALEM ENGINEERING GROUP, INC. 8711 MONROE COURT, SUITE A RANCHO CUCAMONGA, CA 91730

P: (909) 980-6455 F: (909) 980-6435 www.salem.net

8711 Monroe Court, Suite A Rancho Cucamonga, CA 91730 (909) 980-6455 Office (909) 980-6435 Fax

May 18, 2023 **Project No. 3-223-0381**

Mr. Greg Reitz **Crede Group** 18301 Von Karman, Suite 510 Irvine, CA 92612

SUBJECT: LIMITED GEOTECHNICAL ENGINEERING INVESTIGATION

PROPOSED LOADING DOCKS AND PARKING LOT

6730 SANTA FE AVENUE E HESPERIA, CALIFORNIA

Dear Mr. Reitz:

At your request and authorization, SALEM Engineering Group, Inc. (SALEM) has prepared this Limited Geotechnical Engineering Investigation report for the Proposed Loading Docks and Parking Lot to be located at the subject site.

The accompanying report presents our findings, conclusions, and recommendations regarding the geotechnical aspects of designing and constructing the project as presently proposed. In our opinion, the proposed project is feasible from a geotechnical viewpoint provided our recommendations are incorporated into the design and construction of the project.

We appreciate the opportunity to assist you with this project. Should you have questions regarding this report or need additional information, please contact the undersigned at (909) 980-6455.

Respectfully Submitted,

SALEM ENGINEERING GROUP, INC.

Ibrahim Foud Ibrahim, PE, GE Senior Managing Engineer

RCE 86724, GE 3222

Clarence Jiang, GE

Senior Geotechnical Engineer

RGE 2477

TABLE OF CONTENTS

1.	PUR	POSE AND SCOPE	1	
2.	PRO	JECT DESCRIPTION	1	
3.	SITE LOCATION AND DESCRIPTION			
4.	FIELD EXPLORATION			
5.	LAB	ORATORY TESTING	2	
6.	SOII	AND GROUNDWATER CONDITIONS	3	
	6.1	Subsurface Conditions	3	
	6.2	Groundwater	3	
	6.3	Soil Corrosion Screening		
	6.4	Percolation Testing	4	
7.	CON	CLUSIONS AND RECOMMENDATIONS	5	
	7.1	General	5	
	7.2	Seismic Design Criteria	7	
	7.3	Soil and Excavation Characteristics		
	7.4	Materials for Fill	8	
	7.5	Grading		
	7.6	Shallow Foundations for loading docks	12	
	7.7	Exterior Concrete Slabs	13	
	7.8	Lateral Earth Pressures and Frictional Resistance	14	
	7.9	Retaining Walls	15	
	7.10	Temporary Excavations	15	
	7.11	Underground Utilities	16	
	7.12	Surface Drainage	17	
	7.13	Pavement Design	18	
8.	PLA	N REVIEW, CONSTRUCTION OBSERVATION AND TESTING	18	
	8.1	Plan and Specification Review	18	
	8.2	Construction Observation and Testing Services		
9.	LIM	ITATIONS AND CHANGED CONDITIONS	19	

TABLE OF CONTENTS (cont.)

FIGURES

Figure 1, Vicinity Map Figure 2, Site Plan

APPENDIX A - FIELD INVESTIGATION

Figures A-1 through A-4, Logs of Exploratory Soil Borings B-1 through B-4 Percolation Test Results, P-1 and P-2

APPENDIX B - LABORATORY TESTING

Direct Shear Results

Gradation Results

Corrosivity Results

Maximum Density and Optimum Moisture Results

APPENDIX C – EARTHWORK AND PAVEMENT SPECIFICATIONS

8711 Monroe Court, Suite A Rancho Cucamonga, CA 91730 Phone (909) 980-6455 Fax (909) 980-6435

LIMITED GEOTECHNICAL ENGINEERING INVESTIGATION PROPOSED LOADING DOCKS AND PARKING LOT 6730 SANTA FE AVENUE E HESPERIA, CALIFORNIA

1. PURPOSE AND SCOPE

This report presents the results of our Limited Geotechnical Engineering Investigation for the Proposed Loading Docks and Parking Lot to be located at 6730 Santa Fe Avenue E in the city of Hesperia, California (see Figure 1, Vicinity Map). The purpose of our limited geotechnical engineering investigation was to investigate the subsurface conditions encountered at the site, and provide conclusions and recommendations relative to the geotechnical aspects of constructing the project as presently proposed.

The scope of this investigation included a field exploration, percolation testing, laboratory testing, engineering analysis, and the preparation of this report. Our field exploration was performed on May 8, 2023, and included drilling of four (4) small-diameter soil borings to a maximum depth of 10 feet at the site. Additionally, two (2) percolation tests were performed at depths of approximately 3 and 4¾ feet below ground surface to determine the infiltration rates. The approximate locations of the soil borings and percolation tests are depicted on the Site Plan, Figure 2. A detailed discussion of our field investigation and exploratory boring logs are presented in Appendix A.

Laboratory tests were performed on selected soil samples obtained during the investigation to evaluate pertinent physical properties for engineering analyses. Appendix B presents the laboratory test results in tabular and graphic format. The recommendations presented herein are based on analysis of the data obtained during the investigation and our experience with similar soil and geologic conditions. If project details vary significantly from those described herein, SALEM should be contacted to determine the necessity for review and possible revision of this report. Earthwork and Pavement Specifications are presented in Appendix C. If text of the report conflict with the specifications in Appendix C, the recommendations in the text of the report have precedence.

2. PROJECT DESCRIPTION

Based on the site plans provided to us, we understand that the proposed development of the site will include construction of two (2) concrete loading docks and an asphaltic concrete (AC) parking lot. Each loading dock will have 4 depressed loading bays. A loading dock, 80 feet by 100 feet, will be located on the northeast side of the existing building, and another loading dock, 85 feet by 100 feet, will be located at the southeast end of the existing building. The parking lot will be located to the east of the existing building.

As the site area is relatively flat with no major changes in grade, we anticipate that cuts and fills during earthwork will be limited to providing positive site drainage. In the event that changes occur in the nature or design of the project, the conclusions and recommendations contained in this report will not be

considered valid unless the changes are reviewed and the conclusions of our report are modified. The site configuration and locations of proposed improvements are shown on the Site Plan, Figure 2.

3. SITE LOCATION AND DESCRIPTION

The site is located northwest of the intersection of Jenny Street and Santa Fe Avenue E in the city of Hesperia, California (see Vicinity Map, Figure 1). The address of the site is 6730 Santa Fe Avenue E.

The subject site is irregular in shape and encompasses approximately 6.11 acres. The northern half of the site is vacant and will not be developed. The southern half of the site is occupied by a 21,831 square-foot sheet metal 67industrial building surrounded by associated asphalt concrete pavement and unpaved/non-landscaped land. An annex structure currently exists at the east corner of the industrial building. A steel frame structure is located in the north corner of the southern half of the site. A chain-linked fence surrounds the site. The southern half of the site is relatively flat with no major changes in grade.

4. FIELD EXPLORATION

Our field exploration consisted of site surface reconnaissance and subsurface exploration. The exploratory test borings (B-1 through B-4) were drilled on May 8, 2023, and were advanced with a 3-inch diameter hand auger. Exterior asphalt for B-1 and B-4 was cored using a coring machine prior to drilling. The test borings were extended to a maximum depth of approximately 10 feet below existing grade. Drilling was limited to 8 feet in boring B-4 due to auger refusal on hard soil conditions. The approximate locations of our test borings are shown on the Site Plan, Figure 2.

The materials encountered in the test borings were visually classified in the field, and logs were recorded by a field engineer and stratification lines were approximated on the basis of observations made at the time of drilling. Visual classification of the materials encountered in the test borings were generally made in accordance with the Unified Soil Classification System (ASTM D2488).

A soil classification chart and key to sampling is presented on the Unified Soil Classification Chart, in Appendix "A." The logs of the test borings are presented in Appendix "A." The Boring Logs include the soil type, color, moisture content, dry density, and the applicable Unified Soil Classification System symbol. The location of the test borings were determined by measuring from features shown on the Site Plan, provided to us. Hence, accuracy can be implied only to the degree that this method warrants. The actual boundaries between different soil types may be gradual and soil conditions may vary. For a more detailed description of the materials encountered, the Boring Logs in Appendix "A" should be consulted. Soil samples were obtained from the test borings at the depths shown on the logs of borings. Bag samples were recovered and placed in a sealed bag to preserve their natural moisture content. Upon completion of the exploration, the borings were backfilled with soil cuttings, and then patched with concrete patch (where applicable),

5. LABORATORY TESTING

Laboratory tests were performed on selected soil samples to evaluate their physical characteristics and engineering properties. The laboratory-testing program was formulated with emphasis on the evaluation of natural moisture, density, shear strength, maximum density and optimum moisture determination, and gradation of the materials encountered.

In addition, chemical tests were performed to evaluate the corrosivity of the soils to buried concrete and metal. Details of the laboratory test program and the results of laboratory test are summarized in Appendix "B." This information, along with the field observations, was used to prepare the final boring logs in Appendix "A."

6. SOIL AND GROUNDWATER CONDITIONS

6.1 Subsurface Conditions

The subsurface conditions encountered appear typical of those found in the geologic region of the site. In general, the soils within the depth of our borings consisted predominately of silty sand. The exterior surface within our test borings B-1 and B-4 consisted of approximately 2 to 3½ inches of asphalt concrete (AC) underlain by approximately 2 to 3½ inches of aggregate base (AB).

Fill soils may be present on site between our boring locations since the site was graded for the current development. The consistency of the fills should be verified during site construction. Prior to fill placement, Salem Engineering Group, Inc. should inspect the bottom of the excavation to verify no additional excavation will be required. Verification of the fill soils and the extent of fill should be determined during site grading.

The soils were classified in the field during the drilling and sampling operations. The stratification lines were approximated by the field engineer on the basis of observations made at the time of drilling. The actual boundaries between different soil types may be gradual and soil conditions may vary. For a more detailed description of the materials encountered, the Boring Logs in Appendix "A" should be consulted. The Boring Logs include the soil type, color, moisture content, and the applicable Unified Soil Classification System symbol. The locations of the test borings were determined by measuring from feature shown on the Site Plan provided to us. Hence, accuracy can be implied only to the degree that this method warrants.

6.2 Groundwater

The test boring locations were checked for the presence of groundwater during and after the drilling operations. Free groundwater was not encountered during our investigation. Based on regional groundwater data near the site vicinity, the historically highest groundwater depth is estimated to be greater than 50 feet below ground surface. It should be recognized that water table elevations may fluctuate with time, being dependent upon seasonal precipitation, irrigation, land use, localized pumping, and climatic conditions as well as other factors. Therefore, water level observations at the time of the field investigation may vary from those encountered during the construction phase of the project. The evaluation of such factors is beyond the scope of this report.

6.3 Soil Corrosion Screening

Excessive sulfate in either the soil or native water may result in an adverse reaction between the cement in concrete and the soil. The 2014 Edition of ACI 318 (ACI 318) has established criteria for evaluation of sulfate and chloride levels and how they relate to cement reactivity with soil and/or water.

A soil sample was obtained from the project site and was tested for the evaluation of the potential for concrete deterioration or steel corrosion due to attack by soil-borne soluble salts and soluble chloride. The water-soluble sulfate concentration in the saturation extract from the soil sample was detected to be less than 807 mg/kg. ACI 318 Tables 19.3.1.1 and 19.3.2.1 outline exposure categories, classes, and concrete requirements by exposure class. ACI 318 requirements for site concrete based upon soluble sulfate are summarized in Table 6.3 below.

TABLE 6.3
WATER SOLUBLE SULFATE EXPOSURE REQUIREMENTS

Water-Soluble Sulfate (SO ₄) in Soil, %by Weight	Exposure Severity	Exposure Class	Maximum w/cm Ratio	Min. Concrete Compressive Strength	Cementitious Materials Type
0.0807	Not Severe	S0	N/A	2,500 psi	No Restriction

The water-soluble chloride concentration detected in saturation extract from the soil samples was 32 mg/kg. This level of chloride concentration is considered to be mildly corrosive. It is recommended that a qualified corrosion engineer be consulted regarding protection of buried steel or ductile iron piping and conduit or, at a minimum, applicable manufacturer's recommendations for corrosion protection of buried metal pipe be closely followed.

6.4 Percolation Testing

Two percolation tests (P-1 and P-2) were performed. Results of the falling head tests are presented in the attachments to this report. The approximate locations of the percolation tests are shown on the attached Site Plan, Figure 2.

The boreholes were advanced to the depths shown on the percolation test worksheets. The holes were pre-saturated before percolation testing commenced. Percolation rates were measured by filling the test holes with clean water and measuring the water drops at a certain time interval. The difference in the percolation rates are reflected by the varied type of soil materials at the bottom of the test holes. The test results are shown on the table below.

TABLE 6.4 PERCOLATION TEST RESULTS

Test No.	Depth (feet)	Tested Infiltration Rate ¹ (inch/hour)	Factor of Safety ²	Design Infiltration Rate (inch/hour)	Soil Type ³
P-1	43/4	1.12	2.25	0.50	Silty SAND (SM)
P-2	3	2.32	2.25	1.03	Poorly graded SAND (SP)

¹ Tested infiltration Rate = $(\Delta H 60 \text{ r}) / (\Delta t(r + 2H_{avg}))$

²Based on Worksheets H, $S_A = 1.5$ and $S_B = 1.5$

³ At bottom of test hole.

The FS should be verified by the civil engineer based on Worksheets H: Factor of Safety and Design Infiltration Rate and Worksheet provided in the San Bernardino County Stormwater Program, Technical Guidance Document for Water Quality Management Plans (WQMP).

The soil infiltration or percolation rates are based on tests conducted with clear water. The infiltration/percolation rates may vary with time as a result of soil clogging from water impurities. The soils may also become less permeable to impermeable if the soil is compacted. Thus, periodic maintenance consisting of clearing the bottom of the drainage system of clogged soils should be expected. The infiltration/percolation rate may become slower if the surrounding soil is wet or saturated due to prolonged rainfalls. Additional percolation tests should be conducted at bottom of the drainage system during construction to verify the infiltration/percolation rate.

The scope of our services did not include a groundwater study and was limited to the performance of percolation testing and soil profile description, and the submitted data only. Our services did not include those associated with septic system design. Neither did services include an Environmental Site Assessment for the presence or absence of hazardous and/or toxic materials in the soil, groundwater, or atmosphere; or the presence of wetlands. Any statements, or absence of statements, in this report or on any boring logs regarding odors, unusual or suspicious items, or conditions observed, are strictly for descriptive purposes and are not intended to convey engineering judgment regarding potential hazardous and/or toxic assessment.

The geotechnical engineering information presented herein is based upon professional interpretation utilizing standard engineering practices. The work conducted through the course of this investigation, including the preparation of this report, has been performed in accordance with the generally accepted standards of geotechnical engineering practice, which existed in the geographic area at the time the report was written. No other warranty, express or implied, is made. Please be advised that when performing percolation testing services in relatively small diameter borings, that the testing may not fully model the actual full scale long term performance of a given site. This is particularly true where percolation test data is to be used in the design of large infiltration system such as may be proposed for the site.

The measured percolation rate includes dispersion of the water at the sidewalls of the boring as well as into the underlying soils. Subsurface conditions, including percolation rates, can change over time as fine-grained soils migrate. It is not warranted that such information and interpretation cannot be superseded by future geotechnical engineering developments. We emphasize that this report is valid for the project outlined above and should not be used for any other sites.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 General

7.1.1 Based upon the data collected during this investigation, and from a geotechnical engineering standpoint, it is our opinion that the site is suitable for the proposed construction at the site as planned, provided the recommendations contained in this report are incorporated into the project design and construction. Conclusions and recommendations provided in this report are based on our review of available literature, analysis of data obtained from our field exploration and laboratory testing program, and our understanding of the proposed development at this time.

- 7.1.2 The primary geotechnical constraints identified in our investigation is the presence of potentially compressible soils at the site. Recommendations to mitigate the effects of these soils are provided in this report.
- 7.1.3 The scope of this investigation did not include subsurface exploration within the existing building and structure areas during field exploration. As such, subsurface soil conditions and materials present below the existing site structures are unknown and may be different than those noted within this report. The presence of potentially unacceptable fill materials, undocumented fill, and/or loose soil material that may be present below existing site features shall be taken into consideration. Our firm shall be present at the time of demolition activities to verify soil conditions are consistent with those identified as part of this investigation.
- 7.1.4 No significant fill soils were encountered during this investigation. Fill soils may be present on site between our boring locations since the site was graded for the current development. Verification of the fill soil and the extent of fill should be determined during site grading. Undocumented/uncompacted fill materials are not suitable to support any future structures and should be excavated and replaced with Engineered Fill. Prior to fill placement, SALEM should inspect the bottom of the excavation to verify the fill condition.
- 7.1.5 Site demolition activities shall include removal of all surface obstructions not intended to be incorporated into final site design. In addition, underground buried structures and/or utility lines encountered during demolition and construction should be properly removed and the resulting excavations backfilled with Engineered Fill. It is suspected that possible demolition activities of the existing structures may disturb the upper soils. After demolition activities, it is recommended that disturbed soils be removed and/or recompacted.
- 7.1.6 Surface vegetation consisting of grasses and other similar vegetation should be removed by stripping to a sufficient depth to remove organic-rich topsoil. The upper 4 to 6 inches of the soils containing vegetation, roots, and other objectionable organic matter encountered at the time of grading should be stripped and removed from the surface. Deeper stripping may be required in localized areas. The stripped vegetation will not be suitable for use as Engineered Fill or within 5 feet of building pads, loading docks or within pavement areas. However, stripped topsoil may be stockpiled and reused in landscape or non-structural areas or exported from the site.
- 7.1.7 SALEM shall review the project grading and foundation plans and specifications prior to final design submittal to assess whether our recommendations have been properly implemented and evaluate if additional analysis and/or recommendations are required. If SALEM is not provided plans and specifications for review, we cannot assume any responsibility for the future performance of the project.
- 7.1.8 SALEM shall be present at the site during site demolition and preparation to observe site clearing/demolition, preparation of exposed surfaces after clearing, and placement, treatment and compaction of fill material.
- 7.1.9 SALEM's observations should be supplemented with periodic compaction tests to establish substantial conformance with these recommendations. Moisture content of footings and slab subgrade should be tested immediately prior to concrete placement. SALEM should observe

foundation excavations prior to placement of reinforcing steel or concrete to assess whether the actual bearing conditions are compatible with the conditions anticipated during the preparation of this report.

7.2 Seismic Design Criteria

7.2.1 For seismic design of the structures, and in accordance with the seismic provisions of the 2022 CBC, our recommended parameters are shown below. These parameters were determined using California's Office of Statewide Health Planning and Development (OSHPD) Seismic Design Map Tool Website (https://seismicmaps.org/) in accordance with the 2022 CBC. The Site Class was determined based on the soils encountered during our field exploration.

TABLE 7.2.1 SEISMIC DESIGN PARAMETERS

Seismic Item	Symbol	Value	ASCE 7-16 or 2022 CBC Reference
Site Coordinates (Datum = NAD 83)		34.3730 Lat -117.3211 Lon	
Site Class		D-Default	ASCE 7 Table 20.3
Risk Category		II	CBC Table 1604.5
Site Coefficient for PGA	F _{PGA}	1.2	ASCE 7 Table 11.8-1
Peak Ground Acceleration (adjusted for Site Class effects)	PGA _M	0.685g	ASCE 7 Equation 11.8-1
Seismic Design Category	SDC	D	ASCE 7 Table 11.6-1 & 2
Mapped Spectral Acceleration (Short period - 0.2 sec)	S_{S}	1.5 g	CBC Figure 1613.2.1(1-10)
Mapped Spectral Acceleration (1.0 sec. period)	S_1	0.6 g	CBC Figure 1613.2.1(1-10)
Site Class Modified Site Coefficient	Fa	1.2	CBC Table 1613.2.3(1)
Site Class Modified Site Coefficient	F_{v}	*1.7	CBC Table 1613.2.3(2)
MCE Spectral Response Acceleration (Short period - 0.2 sec) $S_{MS} = F_a S_S$	S_{MS}	1.8 g	CBC Equation 16-20
MCE Spectral Response Acceleration (1.0 sec. period) $S_{M1} = F_v S_1$	S_{M1}	*1.53 g	CBC Equation 16-21
Design Spectral Response Acceleration $S_{DS}=\frac{2}{3}S_{MS}$ (short period - 0.2 sec)	S_{DS}	1.2 g	CBC Equation 16-22
Design Spectral Response Acceleration $S_{D1}=\frac{2}{3}S_{M1}$ (1.0 sec. period)	S_{D1}	*1.02 g	CBC Equation 16-23
Short Term Transition Period (S _{D1} /S _{DS}), seconds	T_{S}	0.85	ASCE 7-16, Section 11.4.6
Long Period Transition Period (seconds)	$T_{ m L}$	12	ASCE 7-16, Figure 22-14

^{*} Determined per ASCE Table 11.4-2 for use in calculating Ts only.

7.2.2 Site Specific Ground Motion Analysis was not included in the scope of this investigation. Per ASCE 11.4.8, structures on Site Class D with S₁ greater than or equal to 0.2 may require Site Specific Ground Motion Analysis. However, a site specific motion analysis may not be required based on Exceptions listed in ASCE 11.4.8. The Structural Engineer should verify whether

Exception No. 2 of ASCE 7-16, Section 11.4.8, is valid for the site. In the event that a site specific ground motion analysis is required, SALEM should be contacted for these services.

7.2.3 Conformance to the criteria in the above table for seismic design does not constitute any kind of guarantee or assurance that significant structural damage or ground failure will not occur if a large earthquake occurs. The primary goal of seismic design is to protect life, not to avoid all damage, since such design may be economically prohibitive.

7.3 Soil and Excavation Characteristics

- 7.3.1 Based on the soil conditions encountered in our soil borings, the onsite soils can be excavated with moderate effort using conventional heavy-duty earthmoving equipment.
- 7.3.2 It is the responsibility of the contractor to ensure that all excavations and trenches are properly shored and maintained in accordance with applicable Occupational Safety and Health Administration (OSHA) rules and regulations to maintain safety and maintain the stability of adjacent existing improvements. Temporary excavations are further discussed in a later Section of this report.
- 7.3.3 The near surface soils identified as part of our investigation are, generally, slightly moist to moist due to the absorption characteristics of the soil. Earthwork operations may encounter very moist unstable soils which may require removal to a stable bottom. Exposed native soils exposed as part of site grading operations shall not be allowed to dry out and should be kept continuously moist prior to placement of subsequent fill.

7.4 Materials for Fill

- 7.4.1 Excavated soils generated from cut operations at the site are suitable for use as general Engineered Fill in structural areas provided they do not contain deleterious matter, debris, organic material, or rock material larger than 3 inches in maximum dimension.
- 7.4.2 Import soil shall be well-graded, slightly cohesive silty fine sand or sandy silt, with relatively impervious characteristics when compacted. A clean sand or very sandy soil is not acceptable for this purpose. This material should be approved by the Engineer prior to use and should typically possess the soil characteristics summarized below in Table 7.4.2.

TABLE 7.4.2 IMPORT FILL REQUIREMENTS

Minimum Percent Passing No. 200 Sieve	15
Maximum Percent Passing No. 200 Sieve	50
Minimum Percent Passing No. 4 Sieve	70
Maximum Particle Size	3"
Maximum Plasticity Index	10
Maximum CBC Expansion Index	15

- 7.4.3 The preferred materials specified for Engineered Fill are suitable for most applications with the exception of exposure to erosion. Project site winterization and protection of exposed soils during the construction phase should be the sole responsibility of the Contractor, since they have complete control of the project site.
- 7.4.4 Proposed import materials should be sampled, tested, and approved by SALEM prior to its transportation to the site.
- 7.4.5 Environmental characteristics and corrosion potential of import soil materials should also be considered.

7.5 Grading

- 7.5.1 A representative of our firm shall be present during all site clearing and grading operations to test and observe earthwork construction. This testing and observation is an integral part of our service as acceptance of earthwork construction is dependent upon compaction of the material and the stability of the material. The Geotechnical Engineer may reject any material that does not meet compaction and stability requirements. Further recommendations of this report are predicated upon the assumption that earthwork construction will conform to recommendations set forth in this section as well as other portions of this report.
- 7.5.2 A preconstruction conference should be held at the site prior to the beginning of grading operations with the owner, contractor, civil engineer and geotechnical engineer in attendance.
- 7.5.3 Site preparation should begin with removal of existing surface/subsurface structures, underground utilities (as required), any existing uncertified fill, and debris. Excavations or depressions resulting from site clearing operations, or other existing excavations or depressions, should be restored with Engineered Fill in accordance with the recommendations of this report.
- 7.5.4 Site demolition activities shall include removal of all surface obstructions not intended to be incorporated into final site design. In addition, underground buried structures and/or utility lines encountered during demolition and construction should be properly removed and the resulting excavations backfilled with Engineered Fill. After demolition activities, it is recommended that disturbed soils be removed and/or recompacted.
- 7.5.5 Surface vegetation consisting of grasses and other similar vegetation should be removed by stripping to a sufficient depth to remove organic-rich topsoil. The upper 2 to 6 inches of the soils containing, vegetation, roots and other objectionable organic matter encountered at the time of grading should be stripped and removed from the surface. Deeper stripping may be required in localized areas. In addition, existing concrete and asphalt materials shall be removed from areas of proposed improvements and stockpiled separately from excavated soil material. The stripped vegetation, asphalt and concrete materials will not be suitable for use as Engineered Fill or within 5 feet of building pads, loading docks, or within pavement areas. However, stripped topsoil may be stockpiled and reused in landscape or non-structural areas or exported from the site.
- 7.5.6 Tree root systems in proposed improvement areas should be removed to a minimum depth of 3 feet and to such an extent which would permit removal of all roots greater than ½ inch in diameter.

Tree roots removed in parking areas may be limited to the upper 1½ feet of the ground surface. Backfill of tree root excavations is not permitted until all exposed surfaces have been inspected and the Soils Engineer is present for the proper control of backfill placement and compaction. Burning in areas which are to receive fill materials shall not be permitted.

- 7.5.7 No significant fill soils were encountered in our test borings. Fill soil may be present onsite since the site was previously graded for the current development. Undocumented and uncompacted fill materials are not suitable to support any future structures and should be excavated and replaced with Engineered Fill. The actual depth of the overexcavation and recompaction should be determined by our field representative during construction.
- 7.5.8 To minimize post-construction soil movement and provide uniform support for the proposed loading docks, overexcavation and recompaction within the proposed loading dock areas should be performed to a minimum depth of **two (2) feet** below existing grade or **one (1) foot** below footing bottom, whichever is deeper. The overexcavation and recompaction should also extend laterally to a minimum of 3 feet beyond the outer edges of the proposed footings except in areas where lateral extension is restricted by existing footings.
- 7.5.9 Slot cuts, braced shorings or shields may be used for supporting vertical excavations near existing structures. Therefore, in order to comply with the local and state safety regulations, a properly designed and installed shoring system would be required to accomplish planned excavations and installation.
- 7.5.10 Within pavement areas, it is recommended that scarification, moisture conditioning, and recompaction be performed to at least <u>12 inches</u> below existing grade or finish grade, whichever is deeper. In addition, the upper 12 inches of final pavement subgrade whether completed atgrade, by excavation, or by filling should be uniformly moisture-conditioned to near the optimum moisture content and compacted to at least 95% relative compaction
- 7.5.11 Prior to placement of fill soils, the upper 10 to 12 inches of native subgrade soils should be scarified, moisture-conditioned to no less than optimum moisture content, and recompacted to a minimum of 95% of the maximum dry density based on ASTM Test Method D1557 latest edition.
- 7.5.12 All Engineered Fill (including scarified ground surfaces and backfill) should be placed in thin lifts to allow for adequate bonding and compaction (typically 6 to 8 inches in loose thickness).
- 7.5.13 Engineered Fill soils should be placed, moisture conditioned to no less than optimum moisture content, and compacted to at least 95% relative compaction.
- 7.5.14 An integral part of satisfactory fill placement is the stability of the placed lift of soil. If placed materials exhibit excessive instability as determined by a SALEM field representative, the lift will be considered unacceptable and shall be remedied prior to placement of additional fill material. Additional lifts should not be placed if the previous lift did not meet the required dry density or if soil conditions are not stable.

- 7.5.15 Final pavement subgrade should be finished to a smooth, unyielding surface. We further recommend proof-rolling the subgrade with a loaded water truck (or similar equipment with high contact pressure) to verify the stability of the subgrade prior to placing aggregate base.
- 7.5.16 The most effective site preparation alternatives will depend on site conditions prior to grading. We should evaluate site conditions and provide supplemental recommendations immediately prior to grading, if necessary.
- 7.5.17 We do not anticipate groundwater or seepage to adversely affect construction if conducted during the drier months of the year (typically summer and fall). However, groundwater and soil moisture conditions could be significantly different during the wet season (typically winter and spring) as surface soils become wet; perched groundwater conditions may develop. Grading during this time period will increase the chances of encountering wet materials resulting in possible excavation and fill placement difficulties.

Project site winterization consisting of placement of aggregate base and protecting exposed soils during construction should be performed. If the construction schedule requires grading operations during the wet season, we can provide additional recommendations as conditions warrant.

7.5.18 Wet soils may become non conducive to site grading as the upper soils yield under the weight of the construction equipment. Therefore, mitigation measures should be performed for stabilization.

Typical remedial measures include: discing and aerating the soil during dry weather; mixing the soil with dryer materials; removing and replacing the soil with an approved fill material or placement of slurry, crushed rocks or aggregate base material; or mixing the soil with an approved lime or cement product.

The most common remedial measure of stabilizing the bottom of the excavation due to wet soil condition is to reduce the moisture of the soil to near the optimum moisture content by having the subgrade soils scarified and aerated or mixed with drier soils prior to compacting. However, the drying process may require an extended period of time and delay the construction operation.

To expedite the stabilizing process, slurry or crushed rock may be utilized for stabilization provided this method is approved by the owner for the cost purpose. If the use of slurry or crushed rock is considered, it is recommended that the upper soft and wet soils be replaced by 6 to 24 inches of 2-sack slurry or ¾-inch to 1-inch crushed rocks. The thickness of the slurry or rock layer depends on the severity of the soil instability. The recommended 6 to 24 inches of slurry or crushed rock material will provide a stable platform. It is further recommended that lighter compaction equipment be utilized for compacting the crushed rock.

A layer of geofabric is recommended to be placed on top of the compacted crushed rock to minimize migration of soil particles into the voids of the crushed rock, resulting in soil movement. Although it is not required, the use of geogrid (e.g. Tensar NX750) below the slurry or crushed rock will enhance stability and reduce the required thickness of crushed rock necessary for stabilization. Our firm should be consulted prior to implementing remedial measures to provide appropriate recommendations.

7.6 Shallow Foundations for loading docks

- 7.6.1 The site is suitable for use of conventional shallow foundations consisting of continuous footings and isolated pad footings bearing in properly compacted Engineered Fill.
- 7.6.2 The bearing wall footings considered for the structure should be continuous with a minimum width of 15 inches and extend to a minimum depth of 18 inches below the lowest adjacent soil grade. Isolated column footings should have a minimum width of 24 inches and extend a minimum depth of 18 inches below the lowest adjacent soil grade. Footing depth should be measured at the time of footing trench excavation not to include any future material (e.g. base, concrete, asphalt, etc.) over the subgrade.
- 7.6.3 The bottom of footing excavations should be maintained free of loose and disturbed soil. Footing concrete should be placed into a neat excavation.
- 7.6.4 New foundations planned directly adjacent to existing foundations should extend at a minimum to the bottom of new foundations or the depths specified above, whichever is greater
- 7.6.5 Footings proportioned as recommended above may be designed for the maximum allowable soil bearing pressures shown in the table below.

Loading Condition	Allowable Bearing
Dead Load Only	2,000 psf
Dead-Plus-Live Load	2,500 psf
Total Load, Including Wind or Seismic Loads	3,325 psf

- 7.6.6 For design purposes, total settlement due to static and seismic loadings on the order of 1½ inches may be assumed for shallow footings. Differential settlement due to static and seismic loadings, along a 30-foot exterior wall footing or between adjoining column footings, should be ¾ inches, producing an angular distortion of 0.002. Most of the settlement is expected to occur during construction as the loads are applied. However, additional post-construction settlement may occur if the foundation soils are flooded or saturated. The footing excavations should not be allowed to dry out any time prior to pouring concrete.
- 7.6.7 Resistance to lateral footing displacement can be computed using an allowable coefficient of friction factor of 0.45 acting between the base of foundations and the supporting subgrade.
- 7.6.8 Lateral resistance for footings can alternatively be developed using an allowable equivalent fluid passive pressure of 350 pounds per cubic foot acting against the appropriate vertical native footing faces. The frictional and passive resistance of the soil may be combined provided that a 50 percent reduction of the frictional resistance factor is used when determining the total lateral resistance. An increase of one-third is permitted when using the alternate load combination that includes wind or earthquake loads.

- 7.6.9 Underground utilities running parallel to footings should not be constructed in the zone of influence of footings. The zone of influence may be taken to be the area beneath the footing and within a 1:1 plane extending out and down from the bottom edge of the footing.
- 7.6.10 The foundation subgrade should be sprinkled as necessary to maintain a moist condition without significant shrinkage cracks as would be expected in any concrete placement. Prior to placing rebar reinforcement, foundation excavations should be evaluated by a representative of SALEM for appropriate support characteristics and moisture content. Moisture conditioning may be required for the materials exposed at footing bottom, particularly if foundation excavations are left open for an extended period.

7.7 Exterior Concrete Slabs

- 7.7.1 The upper 24 inches of the slab subgrade should be recompacted to a minimum of 95 percent of the maximum dry density as determined by ASTM D1557, and the slab should be underlain by at least 6 inches of crushed aggregate base (CAB) compacted to a minimum relative compaction of 95 percent.
- 7.7.2 Slabs should have a minimum thickness of 5 inches, and a minimum compressive strength of 4,000 psi. Slabs should be reinforced as a minimum with No. 4 reinforcement bars at 18 inches on center, each way. Thicker slabs and/or additional reinforcement may be required by the structural engineer based on the anticipated loading.
- 7.7.3 Concrete slabs may be designed utilizing an allowable bearing pressure of 1,000 psf for deadplus-live loads. This value may be increased by one-third for short duration loads, such as wind or seismic.
- 7.7.4 The subgrade should be kept in a moist condition until time of slab placement. Slabs subject to structural loading may be designed utilizing a modulus of subgrade reaction K of 200 pounds per square inch per inch. The K value was approximated based on inter-relationship of soil classification and bearing values (Portland Cement Association, Rocky Mountain Northwest).
- 7.7.5 It is recommended that utility trenches within the structure be compacted, as specified in our report, to minimize the transmission of moisture through the utility trench backfill.
- 7.7.6 Ponding of water should not be allowed adjacent to the slabs. Over-irrigation in landscaped areas adjacent to the slabs should be prevented.
- 7.7.7 Proper finishing and curing should be performed in accordance with the latest guidelines provided by the American Concrete Institute, Portland Cement Association, and ASTM.

7.8 Lateral Earth Pressures and Frictional Resistance

7.8.1 Active, at-rest and passive unit lateral earth pressures against footings and walls are summarized in the table below:

Lateral Pressures Drained and Level Backfill Conditions	Equivalent Fluid Pressure, pcf
Active Pressure	33
At-Rest Pressure	52
Passive Pressure	350
Related Parameters	
Allowable Coefficient of Friction	0.45
In-Place Soil Density (lbs/ft ³)	120

- 7.8.2 Active pressure applies to walls, which are free to rotate. At-rest pressure applies to walls, which are restrained against rotation. The preceding lateral earth pressures assume sufficient drainage behind retaining walls to prevent the build-up of hydrostatic pressure.
- 7.8.3 The top one-foot of adjacent subgrade should be deleted from the passive pressure computation.
- 7.8.4 A safety factor consistent with the design conditions should be included in the usage of the values in the above table.
- 7.8.5 For stability against lateral sliding, which is resisted solely by the passive pressure, we recommend a minimum safety factor of 1.5.
- 7.8.6 For stability against lateral sliding, which is resisted by the combined passive and frictional resistance, a minimum safety factor of 2.0 is recommended.
- 7.8.7 For lateral stability against seismic loading conditions, we recommend a minimum safety factor of 1.1.
- 7.8.8 For dynamic seismic lateral loading the following equation shall be used:

Dynamic Seismic Lateral Loading Equation			
Dynamic Seismic Lateral Load = 3/8γK _h H ²			
Where: γ = In-Place Soil Density			
K _h = Horizontal Acceleration = ² / ₃ PGA _M			
H = Wall Height			

7.9 Retaining Walls

- 7.9.1 Retaining and/or below grade walls should be drained with either perforated pipe encased in free-draining gravel or a prefabricated drainage system. The gravel zone should have a minimum width of 12 inches wide and should extend upward to within 12 inches of the top of the wall. The upper 12 inches of backfill should consist of native soils, concrete, asphaltic-concrete or other suitable backfill to minimize surface drainage into the wall drain system. The gravel should be completely wrapped in nonwoven polypropylene geotextiles (filter fabric) to minimize migration of soil particles into the voids of the crushed rock.
- 7.9.2 Prefabricated drainage systems, such as Miradrain®, Enkadrain®, or an equivalent substitute, are acceptable alternatives in lieu of gravel provided they are installed in accordance with the manufacturer's recommendations. If a prefabricated drainage system is proposed, our firm should review the system for final acceptance prior to installation.
- 7.9.3 Drainage pipes should be placed with perforations down and should discharge in a non-erosive manner away from foundations and other improvements. The top of the perforated pipe should be placed at or below the bottom of the adjacent floor slab or pavements. The pipe should be placed in the center line of the drainage blanket and should have a minimum diameter of 4 inches. Slots should be no wider than 1/8-inch in diameter, while perforations should be no more than 1/4-inch in diameter.
- 7.9.4 If retaining walls are less than 5 feet in height, the perforated pipe may be omitted in lieu of weep holes on 4 feet maximum spacing. The weep holes should consist of 2-inch minimum diameter holes (concrete walls) or unmortared head joints (masonry walls) and placed no higher than 18 inches above the lowest adjacent grade. Two 8-inch square overlapping patches of geotextile fabric (conforming to the CalTrans Standard Specifications for "edge drains") should be affixed to the rear wall opening of each weep hole to retard soil piping.
- 7.9.5 During grading and backfilling operations adjacent to any walls, heavy equipment should not be allowed to operate within a lateral distance of 5 feet from the wall, or within a lateral distance equal to the wall height, whichever is greater, to avoid developing excessive lateral pressures. Within this zone, only hand operated equipment ("whackers," vibratory plates, or pneumatic compactors) should be used to compact the backfill soils.

7.10 Temporary Excavations

- 7.10.1 We anticipate that the majority of the near surface site soils will be classified as Cal-OSHA "Type C" soil when encountered in excavations during site development and construction. Excavation sloping, benching, the use of trench shields, and the placement of trench spoils should conform to the latest applicable Cal-OSHA standards. The contractor should have a Cal-OSHA-approved "competent person" onsite during excavation to evaluate trench conditions and make appropriate recommendations where necessary.
- 7.10.2 It is the contractor's responsibility to provide sufficient and safe excavation support as well as protecting nearby utilities, structures, and other improvements which may be damaged by earth movements. All onsite excavations must be conducted in such a manner that potential surcharges

from existing structures, construction equipment, and vehicle loads are resisted. The surcharge area may be defined by a 1:1 projection down and away from the bottom of an existing foundation or vehicle load.

- 7.10.3 Temporary excavations and slope faces should be protected from rainfall and erosion. Surface runoff should be directed away from excavations and slopes.
- 7.10.4 Open, unbraced excavations in undisturbed soils should be made according to the slopes presented in the following table:

RECOMMENDED EXCAVATION SLOPES

Depth of Excavation (ft)	Slope (Horizontal : Vertical)
0-5	1:1
5-10	2:1

- 7.10.5 If, due to space limitation, excavations near property lines or existing structures are performed in a vertical position, slot cuts, braced shorings or shields may be used for supporting vertical excavations. Therefore, in order to comply with the local and state safety regulations, a properly designed and installed shoring system would be required to accomplish planned excavations and installation. A Specialty Shoring Contractor should be responsible for the design and installation of such a shoring system during construction.
- 7.10.6 Braced shorings should be designed for a maximum pressure distribution of 30H, (where H is the depth of the excavation in feet). The foregoing does not include excess hydrostatic pressure or surcharge loading. Fifty percent of any surcharge load, such as construction equipment weight, should be added to the lateral load given herein. Equipment traffic should concurrently be limited to an area at least 3 feet from the shoring face or edge of the slope.
- 7.10.7 The excavation and shoring recommendations provided herein are based on soil characteristics derived from the borings within the area. Variations in soil conditions will likely be encountered during the excavations. SALEM Engineering Group, Inc. should be afforded the opportunity to provide field review to evaluate the actual conditions and account for field condition variations not otherwise anticipated in the preparation of this recommendation. Slope height, slope inclination, or excavation depth should in no case exceed those specified in local, state, or federal safety regulation, (e.g. OSHA) standards for excavations, 29 CFR part 1926, or Assessor's regulations.

7.11 Underground Utilities

7.11.1 Underground utility trenches should be backfilled with properly compacted material. The material excavated from the trenches should be adequate for use as backfill provided it does not contain deleterious matter, vegetation or rock larger than 3-inches in maximum dimension. Trench backfill utilizing native soils should be placed in loose lifts not exceeding 8-inches and compacted to 95% relative compaction.

- 7.11.2 Bedding and pipe zone backfill typically extends from the bottom of the trench excavations to approximately 6 to 12 inches above the crown of the pipe. Pipe bedding and backfill material should conform to the requirements of the governing utility agency.
- 7.11.3 It is suggested that underground utilities crossing beneath new or existing structures be plugged at entry and exit locations to the building or structure to prevent water migration. Trench plugs can consist of on-site clay soils, if available, or sand cement slurry. The trench plugs should extend 2 feet beyond each side of individual perimeter foundations.
- 7.11.4 The contractor is responsible for removing all water-sensitive soils from the trench regardless of the backfill location and compaction requirements. The contractor should use appropriate equipment and methods to avoid damage to the utilities and/or structures during fill placement and compaction.

7.12 Surface Drainage

- 7.12.1 Proper surface drainage is critical to the future performance of the project. Uncontrolled infiltration of irrigation excess and storm runoff into the soils can adversely affect the performance of the planned improvements. Saturation of a soil can cause it to lose internal shear strength and increase its compressibility, resulting in a change to important engineering properties. Proper drainage should be maintained at all times.
- 7.12.2 The ground immediately adjacent to the foundation shall be sloped away from the building at a slope of not less than 5 percent for a minimum distance of 10 feet.
- 7.12.3 Impervious surfaces within 10 feet of the building foundation shall be sloped a minimum of 2 percent away from the building and drainage gradients maintained to carry all surface water to collection facilities and off site. These grades should be maintained for the life of the project. Ponding of water should not be allowed adjacent to the structure. Over-irrigation within landscaped areas adjacent to the structure should not be performed.
- 7.12.4 Roof drains should be installed with appropriate downspout extensions out-falling on splash blocks so as to direct water a minimum of 5 feet away from the structures or be connected to the storm drain system for the development.

7.13 Pavement Design

- 7.13.1 Based on site soil conditions and laboratory testing, an R-value of 40 was used for the preliminary flexible asphaltic concrete pavement design. The R-value may be verified during grading of the pavement areas.
- 7.13.2 The pavement design recommendations provided herein are based on the State of California Department of Transportation (CALTRANS) design manual. The following table shows the recommended pavement sections for various traffic indices.

TABLE 7.13.2 ASPHALT CONCRETE PAVEMENT

Traffic Index	Asphaltic Concrete	Clean Crushed Aggregate Base*	Compacted Subgrade*
5.0 (Vehicle Parking and Drive Areas)	3.0"	4.0"	12.0"
6.0 (Occasional Truck Areas)	3.0"	6.0"	12.0"
7.0 (Heavy Truck Areas)	4.0"	7.0"	12.0"

^{*95%} compaction based on ASTM D1557 Test Method

7.13.3 The following recommendations are for light-duty, medium-duty and heavy-duty Portland Cement Concrete pavement sections.

TABLE 7.13.3
PORTLAND CEMENT CONCRETE PAVEMENT

Traffic Index	Portland Cement Concrete*	Clean Crushed Aggregate Base**	Compacted Subgrade**
5.0 (Light Duty)	5.0"	4.0"	12.0"
6.0 (Medium Duty)	6.0"	4.0"	12.0"
7.0 (Heavy Duty)	7.0"	6.0"	12.0"

^{*} Minimum Compressive Strength of 4,000 psi, Minimum Reinforcement of No. 4 bars at 18 inches o.c. each way
** 95% compaction based on ASTM D1557 Test Method

8. PLAN REVIEW, CONSTRUCTION OBSERVATION AND TESTING

8.1 Plan and Specification Review

8.1.1 SALEM should review the project plans and specifications prior to final design submittal to assess whether our recommendations have been properly implemented and evaluate if additional analysis and/or recommendations are required.

8.2 Construction Observation and Testing Services

- 8.2.1 The recommendations provided in this report are based on the assumption that we will continue as Geotechnical Engineer of Record throughout the construction phase. It is important to maintain continuity of geotechnical interpretation and confirm that field conditions encountered are similar to those anticipated during design. If we are not retained for these services, we cannot assume any responsibility for others interpretation of our recommendations, and therefore the future performance of the project.
- 8.2.2 SALEM should be present at the site during site preparation to observe site clearing, preparation of exposed surfaces after clearing, and placement, treatment and compaction of fill material.
- 8.2.3 SALEM's observations should be supplemented with periodic compaction tests to establish substantial conformance with these recommendations. Moisture content of footings and slab subgrade should be tested immediately prior to concrete placement. SALEM should observe foundation excavations prior to placement of reinforcing steel or concrete to assess whether the actual bearing conditions are compatible with the conditions anticipated during the preparation of this report.

9. LIMITATIONS AND CHANGED CONDITIONS

The analyses and recommendations submitted in this report are based upon the data obtained from the test borings drilled at the approximate locations shown on the Site Plan, Figure 2. The report does not reflect variations which may occur between borings. The nature and extent of such variations may not become evident until construction is initiated. If variations then appear, a re-evaluation of the recommendations of this report will be necessary after performing on-site observations during the excavation period and noting the characteristics of such variations.

The findings and recommendations presented in this report are valid as of the present and for the proposed construction. If site conditions change due to natural processes or human intervention on the property or adjacent to the site, or changes occur in the nature or design of the project, or if there is a substantial time lapse between the submission of this report and the start of the work at the site, the conclusions and recommendations contained in our report will not be considered valid unless the changes are reviewed by SALEM and the conclusions of our report are modified or verified in writing. The validity of the recommendations contained in this report is also dependent upon an adequate testing and observations program during the construction phase.

Our firm assumes no responsibility for construction compliance with the design concepts or recommendations unless we have been retained to perform the on-site testing and review during construction. SALEM has prepared this report for the exclusive use of the owner and project design consultants.

SALEM does not practice in the field of corrosion engineering. It is recommended that a qualified corrosion engineer be consulted regarding protection of buried steel or ductile iron piping and conduit or, at a minimum, that manufacturer's recommendations for corrosion protection be closely followed. Further, a corrosion engineer may be needed to incorporate the necessary precautions to avoid premature corrosion of concrete slabs and foundations in direct contact with native soil. The importation of soil and or aggregate

materials to the site should be screened to determine the potential for corrosion to concrete and buried metal piping.

The report has been prepared in accordance with generally accepted geotechnical engineering practices in the area. No other warranties, either express or implied, are made as to the professional advice provided under

If you have any questions, or if we may be of further assistance, please do not hesitate to contact our office at (909) 980-6455.

Respectfully Submitted,

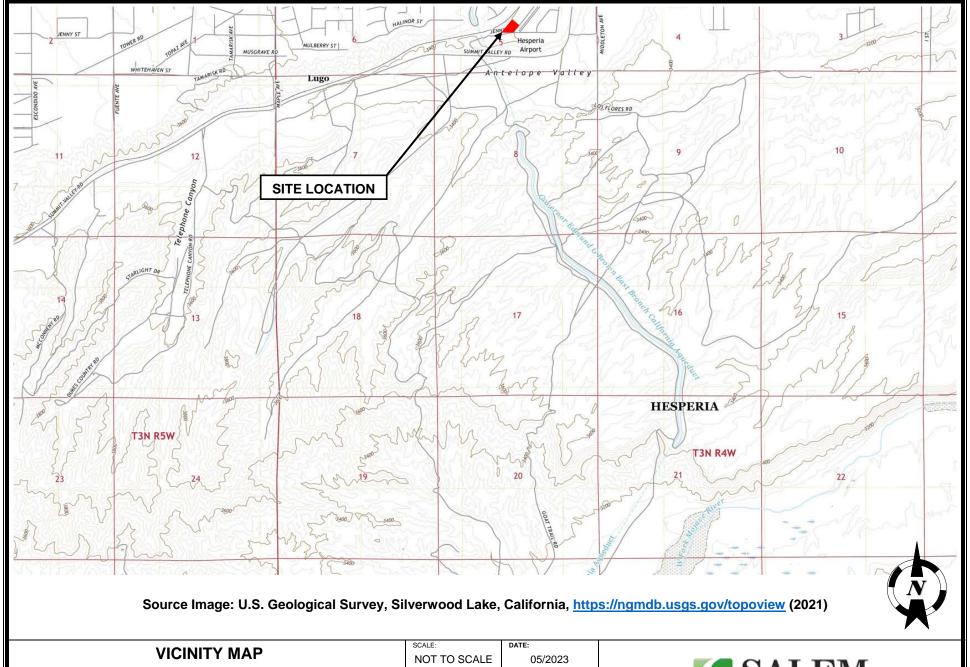
SALEM ENGINEERING GROUP, INC.

Jared Christiansen, MS, PE Geotechnical Project Engineer

RCE 94900

Ibrahim Foud Ibrahim, PE, GE

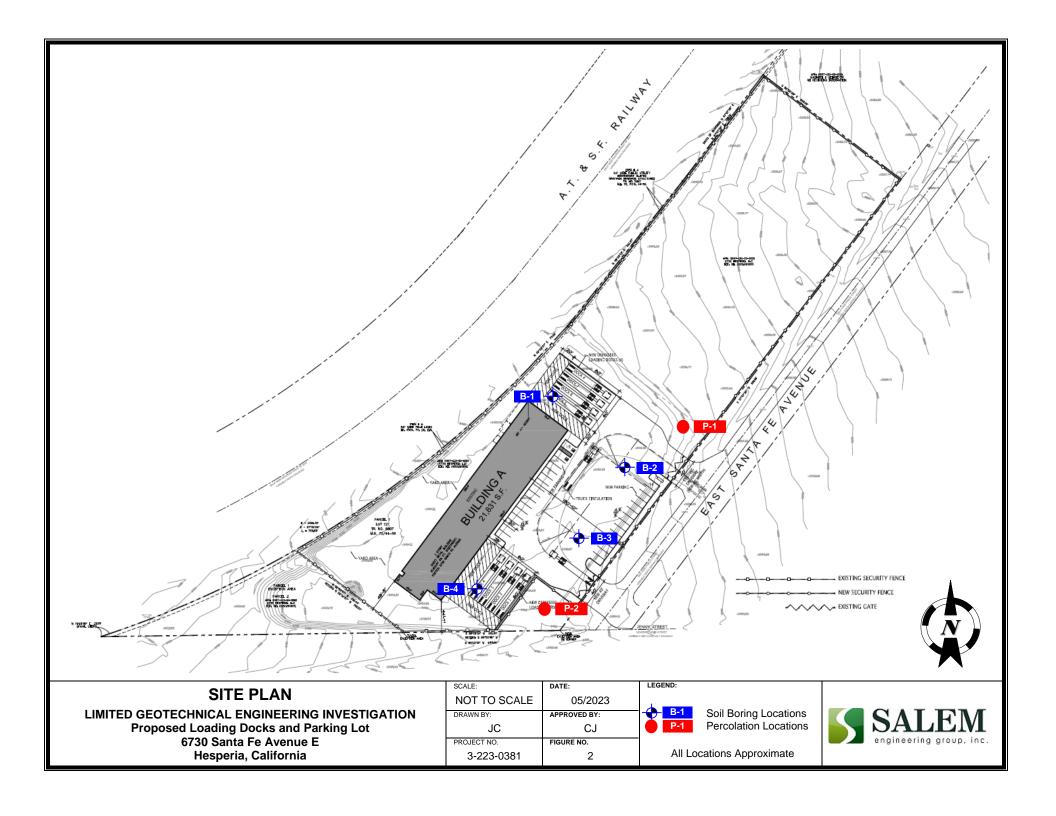
Senior Managing Engineer


RCE 86724 / RGE 3222

Clarence Jiang, GE

Senior Geotechnical Engineer

RGE 2477



LIMITED GEOTECHNICAL ENGINEERING INVESTIGATION
Proposed Loading Docks and Parking Lot
6730 Santa Fe Avenue E
Hesperia, California

SCALE:	DATE:
NOT TO SCALE	05/2023
DRAWN BY:	APPROVED BY:
JC	CJ
PROJECT NO.	FIGURE NO.
3-223-0381	1

APPENDIX

A

APPENDIX A FIELD EXPLORATION

Fieldwork for our investigation (drilling) was conducted on May 8, 2023, and included a site visit, subsurface exploration, percolation testing, and soil sampling. The locations of the exploratory borings and percolation tests are shown on the Site Plan, Figure 2. Boring logs for our exploration are presented in figures following the text in this appendix. Borings were located in the field using existing reference points. Therefore, actual boring locations may deviate slightly.

In general, the test borings were advanced with a 3-inch diameter hand auger. Surface asphalt for borings B-1 and B-4 was cored using a coring machine prior to drilling. The test borings were extended to a maximum depth of 10 feet below existing grade. Subsurface soil samples were obtained from ring samples and the auger cuttings at the depths shown on the logs of borings.

Subsurface conditions encountered in the exploratory borings were visually examined, classified and logged in general accordance with the American Society for Testing and Materials (ASTM) Practice for Description and Identification of Soils (Visual-Manual Procedure D2488). This system uses the Unified Soil Classification System (USCS) for soil designations. The logs depict soil and geologic conditions encountered and depths at which samples were obtained. The logs also include our interpretation of the conditions between sampling intervals. Therefore, the logs contain both observed and interpreted data. We determined the lines designating the interface between soil materials on the logs using visual observations, excavation characteristics and other factors. The transition between materials may be abrupt or gradual. Where applicable, the field logs were revised based on subsequent laboratory testing.

Date: 05/08/2023 Client: Crede Group

Page 1 Of: 1

Project: Proposed Loading Docks and Parking Lot

Location: 6730 Santa Fe Avenue E, Hesperia, California

Drilled By: SALEM Logged By: CC **Drill Type:** N/A **Elevation:** 3,411'

Auger Type: 3 in. Hand Auger **Initial Depth to Groundwater:** N/A

Hammer Type: 35 lb - Manual Drop Final Depth to Groundwater: N/A

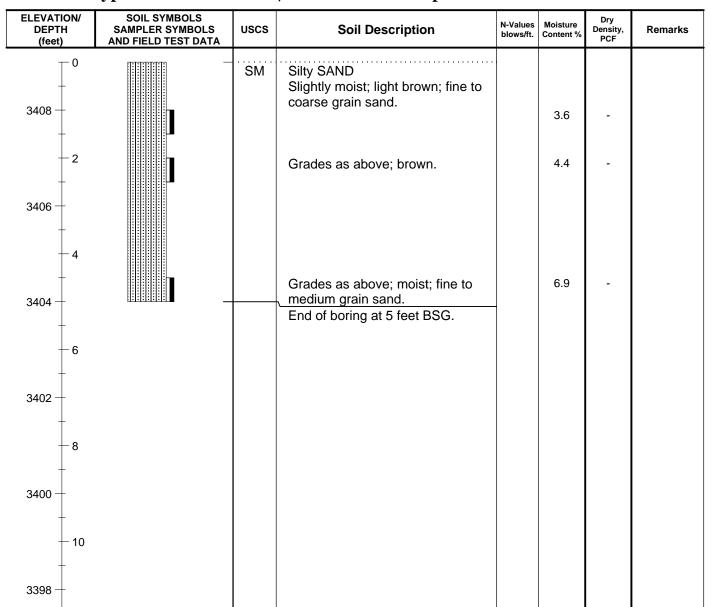
ELEVATION/ DEPTH (feet)	SOIL SYMBOLS SAMPLER SYMBOLS AND FIELD TEST DATA	uscs	Soil Description	N-Values blows/ft.	Moisture Content %	Dry Density, PCF	Remarks
3410 —		AC AB SM	Asphalt Concrete = 2 in. Aggregate Base = 3.25 Silty SAND Moist; brown; fine to coarse grain sand.				
3408			Grades as above; reddish brown.		5.5	105.8	
- - 4 -							
3406			Grades as above.		7.9	-	
3404 —							
3402 —							
- 10 			Grades as above; trace gravel. End of boring at 10 feet BSG.		5.6	-	
3400							

Notes:

Figure Number A-1

Date: 05/08/2023 Client: Crede Group

Page 1 Of: 1


Project: Proposed Loading Docks and Parking Lot

Location: 6730 Santa Fe Avenue E, Hesperia, California

Drilled By: SALEM Logged By: CC **Drill Type:** N/A Elevation: 3,409'

Auger Type: 3 in. Hand Auger Initial Depth to Groundwater: N/A

Hammer Type: 35 lb - Manual Drop Final Depth to Groundwater: N/A

Notes:

Date: 05/08/2023 Client: Crede Group

Page 1 Of: 1

Project: Proposed Loading Docks and Parking Lot

Location: 6730 Santa Fe Avenue E, Hesperia, California

Drilled By: SALEM Logged By: CC **Drill Type:** N/A **Elevation:** 3,412'

Auger Type: 3 in. Hand Auger **Initial Depth to Groundwater:** N/A

Hammer Type: 35 lb - Manual Drop **Final Depth to Groundwater:** N/A

Than bepth to Groundwater. 1974											
ELEVATION/ DEPTH (feet)	SOIL SYMBOLS SAMPLER SYMBOLS AND FIELD TEST DATA	uscs	Soil Description	N-Values blows/ft.	Moisture Content %	Dry Density, PCF	Remarks				
3412 — 0		SM	Silty SAND Moist; brown; fine to coarse grain sand. Grades as above.		5.1	-					
3408 — 4	_		Grades as above. End of boring at 3 feet BSG.		5.8	-					
3406 — 6											
3404 — 8											
3402 — 10											

Notes:

Date: 05/08/2023 Client: Crede Group

Page 1 Of: 1

Project: Proposed Loading Docks and Parking Lot

Location: 6730 Santa Fe Avenue E, Hesperia, California

Drilled By: SALEM Logged By: CC **Drill Type:** N/A **Elevation:** 3,412'

Auger Type: 3 in. Hand Auger **Initial Depth to Groundwater:** N/A

Hammer Type: 35 lb - Manual Drop Final Depth to Groundwater: N/A

ELEVATION/ DEPTH (feet)	SOIL SYMBOLS SAMPLER SYMBOLS AND FIELD TEST DATA	uscs	Soil Description	N-Values blows/ft.	Moisture Content %	Dry Density, PCF	Remarks
3412 — 0		AC AB SM	Asphalt Concrete = 3.25 in. Aggregate Base = 2 in. Silty SAND Moist; reddish brown; fine to coarse grain sand; trace gravel.				
3410 — 2					8.6	115.8	
3408 — 4			Grades as above; brown; less silt.		7.2		
3406 — 6							
3404 — 8	1		Grades as above; light brown. Refusal at 8 feet BSG due to hard soil.		6.6	-	
3402 — 10			SUII.				

Notes:

Figure Number A-4

KEY TO SYMBOLS

Symbol Description

Strata symbols

Asphaltic Concrete

Description not given for:
"AG"

Silty sand

Misc. Symbols

Drill rejection

Soil Samplers

California sampler

Auger

Notes:

Granular Soils
Blows Per Foot (Uncorrected)

Cohesive Soils
Blows Per Foot (Uncorrected)

	MCS	SPT		MCS	SPT
Very loose	<5	<4	Very soft	<3	<2
Loose	5-15	4-10	Soft	3-5	2-4
Medium dense	16-40	11-30	Firm	6-10	5-8
Dense	41-65	31-50	Stiff	11-20	9-15
Very dense	>65	>50	Very Stiff	21-40	16-30
			Hard	>40	>30

MCS = Modified California Sampler

SPT = Standard Penetration Test Sampler

Percolation Test Worksheet

Project: Proposed Loading Docks and Parking Lot Job No.: 3-223-0381

6730 Santa Fe Avenue E Date Drilled: 5/8/2023

Hesperia, California Soil Classification: Silty SAND (SM)

Hole Radius: 3 in.
Pipe Dia.: 3 in.

Test Hole No.: P-1 Presoaking Date: 5/8/2023 Total Depth of Hole: 57 in.

Tested by: CC Test Date: 5/8/2023

Drilled Hole Depth: 4.75 ft. Pipe Stick up: 0.25 ft.

Time Start	Time Finish	Depth of Test Hole (ft)#		Elapsed Time (hrs:min)	Initial Water Level [#] (ft)	Final Water Level [#] (ft)	Δ Water Level (in.)	Δ Min.	Meas. Perc Rate (min/in)	Initial Height of Water (in)	Final Height of Water (in)	Average Height of Water (in)	Infiltration Rate, It (in/hr)
8:25	8:50	5.0	Y	0:25	1.52	2.64	13.44	25	1.9	41.8	28.3	35.0	1.32
8:51	9:16	5.0	Y	0:25	1.60	2.63	12.36	25	2.0	40.8	28.4	34.6	1.23
9:17	9:27	5.0	Y	0:10	2.06	2.44	4.56	10	2.2	35.3	30.7	33.0	1.19
9:27	9:37	5.0	N	0:10	2.44	2.77	3.96	10	2.5	30.7	26.8	28.7	1.18
9:37	9:47	5.0	N	0:10	2.77	3.05	3.36	10	3.0	26.8	23.4	25.1	1.14
9:48	9:58	5.0	Y	0:10	1.64	2.05	4.92	10	2.0	40.3	35.4	37.9	1.13
9:58	10:08	5.0	N	0:10	2.05	2.41	4.32	10	2.3	35.4	31.1	33.2	1.12
10:08	10:18	5.0	N	0:10	2.41	2.73	3.84	10	2.6	31.1	27.2	29.2	1.13
												n Rate	1.12

Percolation Test Worksheet

Project: Proposed Loading Docks and Parking Lot Job No.: 3-223-0381

6730 Santa Fe Avenue E Date Drilled: 5/8/2023

Hesperia, California Soil Classification: Poorly graded SAND (SP)

Hole Radius: 3 in.
Pipe Dia.: 3 in.

Test Hole No.: P-2 Presoaking Date: 5/8/2023 Total Depth of Hole: 36 in.

Tested by: CC Test Date: 5/8/2023

Drilled Hole Depth: 3.0 ft. Pipe Stick up: 1.75 ft.

Time Start	Time Finish	Depth of Test Hole (ft)#		Elapsed Time (hrs:min)	Initial Water Level [#] (ft)	Final Water Level [#] (ft)	Δ Water Level (in.)	Δ Min.	Meas. Perc Rate (min/in)	Initial Height of Water (in)	Final Height of Water (in)	Average Height of Water (in)	Infiltration Rate, It (in/hr)
8:45	9:10	4.8	Y	0:25	2.40	3.75	16.20	25	1.5	28.2	12.0	20.1	2.70
9:11	9:36	4.8	Y	0:25	2.62	3.81	14.28	25	1.8	25.6	11.3	18.4	2.58
9:37	9:47	4.8	Y	0:10	2.70	3.23	6.36	10	1.6	24.6	18.2	21.4	2.50
9:47	9:57	4.8	N	0:10	3.23	3.62	4.68	10	2.1	18.2	13.6	15.9	2.42
9:57	10:07	4.8	N	0:10	3.62	3.91	3.48	10	2.9	13.6	10.1	11.8	2.35
10:08	10:18	4.8	Y	0:10	3.00	3.43	5.16	10	1.9	21.0	15.8	18.4	2.33
10:18	10:28	4.8	N	0:10	3.43	3.76	3.96	10	2.5	15.8	11.9	13.9	2.32
10:28	10:38	4.8	N	0:10	3.76	4.02	3.12	10	3.2	11.9	8.8	10.3	2.38
	· · · · · · · · · · · · · · · · · · ·												
												n Rate	2.32

APPENDIX

B

APPENDIX B LABORATORY TESTING

Laboratory tests were performed in accordance with generally accepted test methods of the American Society for Testing and Materials (ASTM), Caltrans, or other suggested procedures. Selected samples were tested for in-situ moisture content, density, shear strength, maximum density and optimum moisture content, gradation, and corrosivity of the material encountered. The results of the laboratory tests are summarized in the following figures.

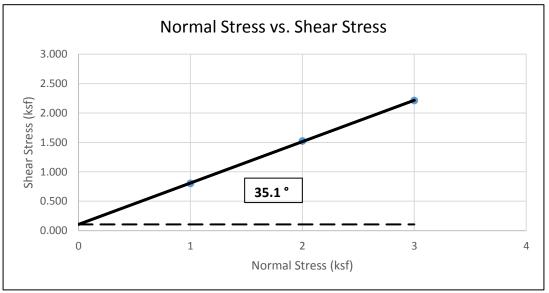
Direct Shear Test (ASTM D3080)

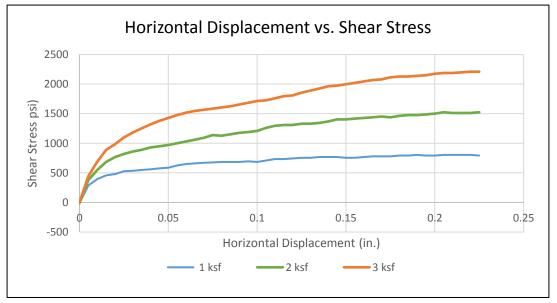
Project Name: Proposed Loading Docks & Parking Lot - Hesperia, CA

Project Number: 3-223-0381
Client: Crede Group
Sample Location: B-1 @ 2'

Sample Type: Undisturbed Ring
Soil Classification: Silty SAND (SM)
Tested By: M. Noorzay

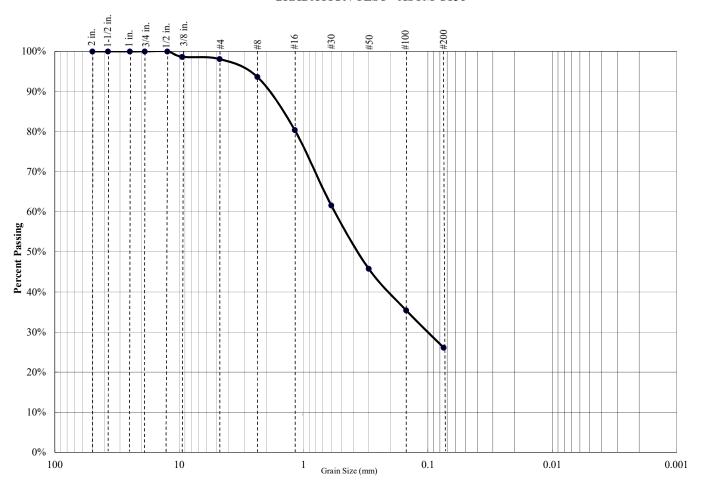
Reviewed By: CJ


Date: 5/11/2023


Equipment Used: Geomatic Direct Shear Machine

	Sample 1	Sample 2	Sample 3
Normal Stress (ksf)	1.000	2.000	3.000
Shear Rate (in/min)	0.004		
Peak Shear Stress (ksf)	0.804	1.524	2.210
Residual Shear Stress (ksf)	0.000	0.000	0.000

Initial Height of Sample (in)	1.000	1.000	1.000
Height of Sample before Shear (in.)	1	1	1
Diameter of Sample (in)	2.416	2.416	2.416
Initial Moisture Content (%)	5.4		
Final Moisture Content (%)	14.5	13.6	13.4
Dry Density (pcf)	108.5	110.2	108.8


Peak Shear Strength Values		
Slope 0.70		
Friction Angle	35.1	
Cohesion (psf)	106	

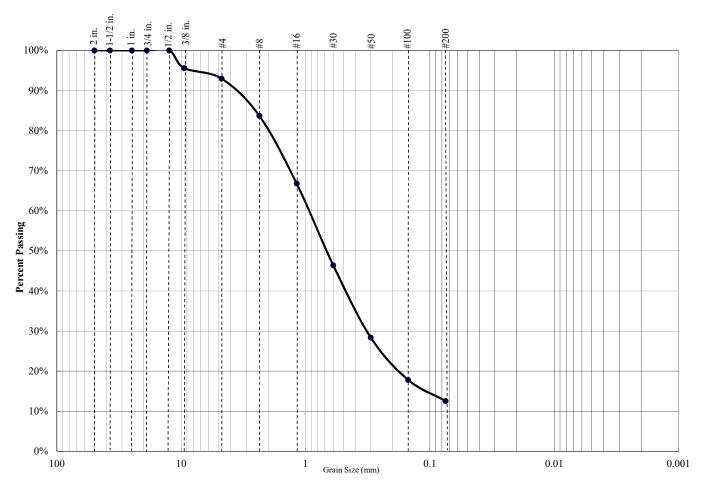
GRADATION TEST - ASTM C136

Percent Gravel Percent Sand		Percent Silt/Clay	
2%	72%	26%	

Sieve Size	Percent Passing
3/4 inch	100.0%
1/2 inch	100.0%
3/8 inch	98.7%
#4	98.1%
#8	93.6%
#16	80.4%
#30	61.6%
#50	45.8%
#100	35.4%
#200	26.1%

Atterberg Limits			
PL=	LL=	PI=	

Coefficients			
D85=		D60=	D50=
D30=		D15=	D10=
$C_u=$	N/A	$C_c =$	N/A


USCS CLASSIFICATION	
Silty SAND (SM)	

Project Name: Proposed Loading Docks & Parking Lot - Hesperia, CA

Project Number: 3-223-0381 Boring: B-1 @ 2'

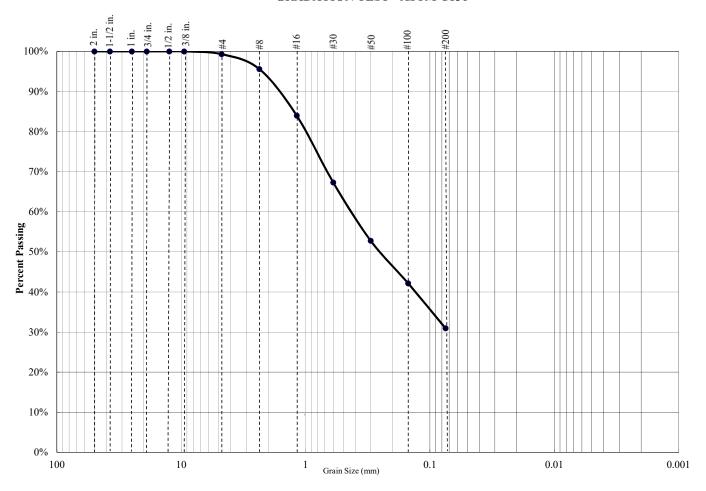
GRADATION TEST - ASTM C136

Percent Gravel Percent Sand		Percent Silt/Clay	
7%	80%	13%	

Sieve Size	Percent Passing
3/4 inch	100.0%
1/2 inch	100.0%
3/8 inch	95.6%
#4	93.0%
#8	83.7%
#16	66.8%
#30	46.4%
#50	28.4%
#100	17.8%
#200	12.6%

Atterberg Limits			
PL=	LL=	PI=	

Coefficients					
D85=		D60=		D50=	
D30=		D15=		$D_{10} =$	
C _u =	N/A	$C_c =$	N/A		


USCS CLASSIFICATION	
Silty SAND (SM)	

Project Name: Proposed Loading Docks & Parking Lot - Hesperia, CA

Project Number: 3-223-0381 Boring: B-1 @ 10'

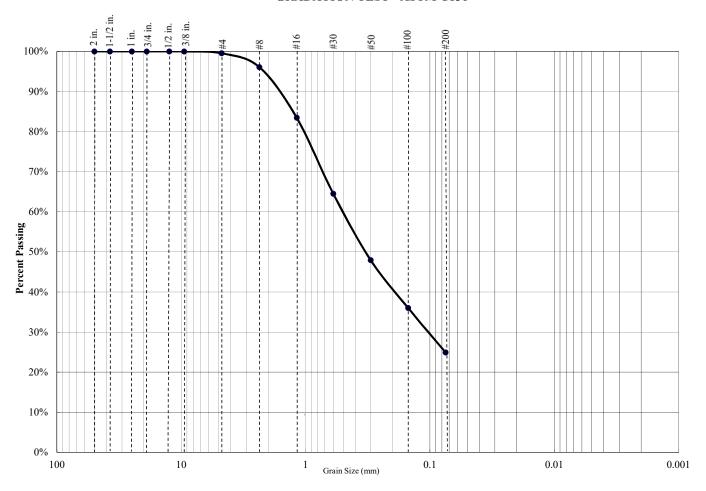
GRADATION TEST - ASTM C136

Percent Gravel	Percent Sand	Percent Silt/Clay
1%	68%	31%

Sieve Size	Percent Passing
3/4 inch	100.0%
1/2 inch	100.0%
3/8 inch	100.0%
#4	99.3%
#8	95.6%
#16	84.0%
#30	67.3%
#50	52.8%
#100	42.2%
#200	30.9%

	Atterberg Limits	
PL=	LL=	PI=

Coefficients					
D85=		D60=		D50=	
D30=		D15=		D10=	
$C_u=$	N/A	$C_c =$	N/A		


USCS CLASSIFICATION	
Silty SAND (SM)	

Project Name: Proposed Loading Docks & Parking Lot - Hesperia, CA

Project Number: 3-223-0381 Boring: B-2 @ 5'

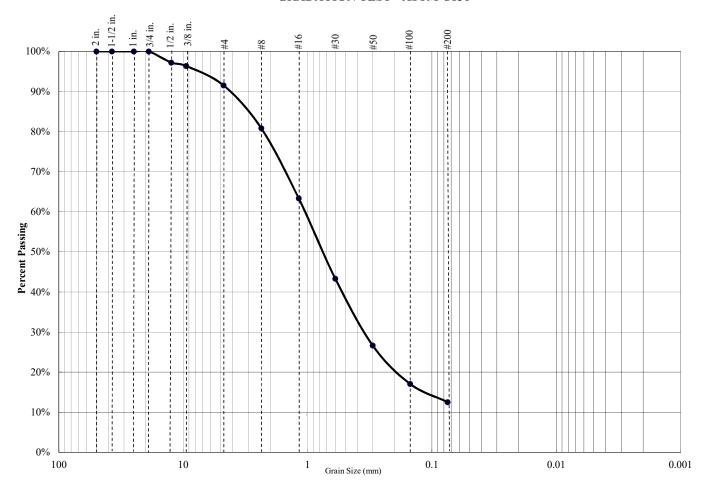
GRADATION TEST - ASTM C136

Percent Gravel	Percent Sand	Percent Silt/Clay
0%	75%	25%

Sieve Size	Percent Passing
3/4 inch	100.0%
1/2 inch	100.0%
3/8 inch	100.0%
#4	99.5%
#8	96.1%
#16	83.5%
#30	64.5%
#50	47.9%
#100	36.0%
#200	24.9%

Atterberg Limits		
PL=	LL=	PI=

Coefficients					
D85=		D60=		D50=	
D30=		D15=		$D_{10} =$	
C _u =	N/A	$C_c =$	N/A		


USCS CLASSIFICATION	
Silty SAND (SM)	

Project Name: Proposed Loading Docks & Parking Lot - Hesperia, CA

Project Number: 3-223-0381 Boring: B-3 @ 1'

GRADATION TEST - ASTM C136

Percent Gravel	Percent Sand	Percent Silt/Clay
8%	79%	13%

Sieve Size	Percent Passing
3/4 inch	100.0%
1/2 inch	97.2%
3/8 inch	96.4%
#4	91.5%
#8	80.8%
#16	63.4%
#30	43.3%
#50	26.7%
#100	17.1%
#200	12.5%

	Atterberg Limits	
PL=	LL=	PI=

Coefficients					
D85=		D60=		D50=	
D30=		D15=		$D_{10} =$	
C _u =	N/A	$C_c =$	N/A		

USCS CLASSIFICATION	
Silty SAND (SM)	

Project Name: Proposed Loading Docks & Parking Lot - Hesperia, CA

Project Number: 3-223-0381 Boring: B-4 @ 5'

CHEMICAL ANALYSIS SO₄ - Modified CTM 417 & Cl - Modified CTM 417/422

Project Name: Proposed Loading Docks & Parking Lot - Hesperia, CA

Project Number: 3-223-0381

Date Sampled: 5/8/2023 Date Tested: 5/11/2023 Sampled By: CC Tested By: M. Noorzay

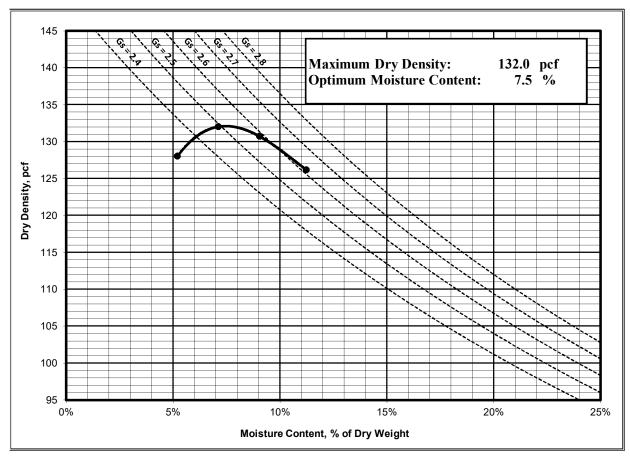
Soil Description: Brown Silty SAND (SM)

Sample	Sample	Soluble Sulfate	Soluble Chloride	рН
Number	Location	SO ₄ -S	Cl	
1a.	B-2 @ 0'-5'	840 mg/kg	32 mg/kg	7.5
1b.	B-2 @ 0'-5'	780 mg/kg	31 mg/kg	7.5
1c.	B-2 @ 0'-5'	800 mg/kg	32 mg/kg	7.5
Ave	rage:	807 mg/kg	32 mg/kg	7.5

Laboratory Compaction Curve ASTM D1557

Project Name: Proposed Loading Docks & Parking Lot - Hesperia, CA

Project Number: 3-223-0381


Date Sampled: 5/8/2023 Date Tested: 5/11/2023 Sampled By: CC Tested By: M. Noorzay

Sample Location: B-2 @ 0'-5'

Soil Description: Brown Silty SAND (SM)

Test Method: Method B

	1	2	3	4
Weight of Moist Specimen & Mold, (g)	6316.7	6418.3	6435.0	6401.9
Weight of Compaction Mold, (g)	4280.2	4280.2	4280.2	4280.2
Weight of Moist Specimen, (g)	2036.5	2138.1	2154.8	2121.7
Volume of Mold, (ft ³)	0.0333	0.0333	0.0333	0.0333
Wet Density, (pcf)	134.7	141.4	142.5	140.3
Weight of Wet (Moisture) Sample, (g)	200.0	200.0	200.0	200.0
Weight of Dry (Moisture) Sample, (g)	190.1	186.7	183.4	179.8
Moisture Content, (%)	5.2%	7.1%	9.1%	11.2%
Dry Density, (pcf)	128.0	132.0	130.7	126.2

APPENDIX

C

APPENDIX C GENERAL EARTHWORK AND PAVEMENT SPECIFICATIONS

When the text of the report conflicts with the general specifications in this appendix, the recommendations in the report have precedence.

- **1.0 SCOPE OF WORK:** These specifications and applicable plans pertain to and include all earthwork associated with the site rough grading, including, but not limited to, the furnishing of all labor, tools and equipment necessary for site clearing and grubbing, stripping, preparation of foundation materials for receiving fill, excavation, processing, placement and compaction of fill and backfill materials to the lines and grades shown on the project grading plans and disposal of excess materials.
- **2.0 PERFORMANCE:** The Contractor shall be responsible for the satisfactory completion of all earthwork in accordance with the project plans and specifications. This work shall be inspected and tested by a representative of SALEM Engineering Group, Incorporated, hereinafter referred to as the Soils Engineer and/or Testing Agency. Attainment of design grades, when achieved, shall be certified by the project Civil Engineer. Both the Soils Engineer and the Civil Engineer are the Owner's representatives. If the Contractor should fail to meet the technical or design requirements embodied in this document and on the applicable plans, he shall make the necessary adjustments until all work is deemed satisfactory as determined by both the Soils Engineer and the Civil Engineer. No deviation from these specifications shall be made except upon written approval of the Soils Engineer, Civil Engineer, or project Architect.

No earthwork shall be performed without the physical presence or approval of the Soils Engineer. The Contractor shall notify the Soils Engineer at least 2 working days prior to the commencement of any aspect of the site earthwork.

The Contractor shall assume sole and complete responsibility for job site conditions during the course of construction of this project, including safety of all persons and property; that this requirement shall apply continuously and not be limited to normal working hours; and that the Contractor shall defend, indemnify and hold the Owner and the Engineers harmless from any and all liability, real or alleged, in connection with the performance of work on this project, except for liability arising from the sole negligence of the Owner or the Engineers.

- **3.0 TECHNICAL REQUIREMENTS**: All compacted materials shall be densified to no less than 95 percent of relative compaction (90 percent for clay soils) based on ASTM D1557 Test Method (latest edition) or as specified in the technical portion of the Soil Engineer's report. The location and frequency of field density tests shall be determined by the Soils Engineer. The results of these tests and compliance with these specifications shall be the basis upon which satisfactory completion of work will be judged by the Soils Engineer.
- **4.0 SOILS AND FOUNDATION CONDITIONS**: The Contractor is presumed to have visited the site and to have familiarized himself with existing site conditions and the contents of the data presented in the Geotechnical Engineering Report. The Contractor shall make his own interpretation of the data contained in the Geotechnical Engineering Report and the Contractor shall not be relieved of liability for any loss sustained as a result of any variance between conditions indicated by or deduced from said report and the actual conditions encountered during the progress of the work.

- **5.0 DUST CONTROL:** The work includes dust control as required for the alleviation or prevention of any dust nuisance on or about the site or the borrow area, or off-site if caused by the Contractor's operation either during the performance of the earthwork or resulting from the conditions in which the Contractor leaves the site. The Contractor shall assume all liability, including court costs of codefendants, for all claims related to dust or wind-blown materials attributable to his work. Site preparation shall consist of site clearing and grubbing and preparation of foundation materials for receiving fill.
- **6.0 CLEARING AND GRUBBING:** The Contractor shall accept the site in this present condition and shall demolish and/or remove from the area of designated project earthwork all structures, both surface and subsurface, trees, brush, roots, debris, organic matter and all other matter determined by the Soils Engineer to be deleterious. Such materials shall become the property of the Contractor and shall be removed from the site.

Tree root systems in proposed improvement areas should be removed to a minimum depth of 3 feet and to such an extent which would permit removal of all roots greater than 1 inch in diameter. Tree roots removed in parking areas may be limited to the upper 1½ feet of the ground surface. Backfill of tree root excavations is not permitted until all exposed surfaces have been inspected and the Soils Engineer is present for the proper control of backfill placement and compaction. Burning in areas which are to receive fill materials shall not be permitted.

7.0 SUBGRADE PREPARATION: Surfaces to receive Engineered Fill and/or building or slab loads shall be prepared as outlined above, scarified to a minimum of 12 inches, moisture-conditioned as necessary, and recompacted to 95 percent relative compaction (90 percent for clay soils).

Loose soil areas and/or areas of disturbed soil shall be moisture-conditioned as necessary and recompacted to 95 percent relative compaction (90 percent for clay soils). All ruts, hummocks, or other uneven surface features shall be removed by surface grading prior to placement of any fill materials. All areas which are to receive fill materials shall be approved by the Soils Engineer prior to the placement of any fill material.

- **8.0 EXCAVATION:** All excavation shall be accomplished to the tolerance normally defined by the Civil Engineer as shown on the project grading plans. All over-excavation below the grades specified shall be backfilled at the Contractor's expense and shall be compacted in accordance with the applicable technical requirements.
- **9.0 FILL AND BACKFILL MATERIAL:** No material shall be moved or compacted without the presence or approval of the Soils Engineer. Material from the required site excavation may be utilized for construction site fills, provided prior approval is given by the Soils Engineer. All materials utilized for constructing site fills shall be free from vegetation or other deleterious matter as determined by the Soils Engineer.
- **10.0 PLACEMENT, SPREADING AND COMPACTION:** The placement and spreading of approved fill materials and the processing and compaction of approved fill and native materials shall be the responsibility of the Contractor. Compaction of fill materials by flooding, ponding, or jetting shall not be permitted unless specifically approved by local code, as well as the Soils Engineer. Both cut and fill shall be surface-compacted to the satisfaction of the Soils Engineer prior to final acceptance.
- **11.0 SEASONAL LIMITS:** No fill material shall be placed, spread, or rolled while it is frozen or thawing, or during unfavorable wet weather conditions. When the work is interrupted by heavy rains, fill

operations shall not be resumed until the Soils Engineer indicates that the moisture content and density of previously placed fill is as specified.

12.0 DEFINITIONS - The term "pavement" shall include asphaltic concrete surfacing, untreated aggregate base, and aggregate subbase. The term "subgrade" is that portion of the area on which surfacing, base, or subbase is to be placed.

The term "Standard Specifications": hereinafter referred to, is the most recent edition of the Standard Specifications of the State of California, Department of Transportation. The term "relative compaction" refers to the field density expressed as a percentage of the maximum laboratory density as determined by ASTM D1557 Test Method (latest edition).

- **13.0 PREPARATION OF THE SUBGRADE** The Contractor shall prepare the surface of the various subgrades receiving subsequent pavement courses to the lines, grades, and dimensions given on the plans. The upper 12 inches of the soil subgrade beneath the pavement section shall be compacted to a minimum relative compaction of 95 percent (90 percent for clay soils) based upon ASTM D1557. The finished subgrades shall be tested and approved by the Soils Engineer prior to the placement of additional pavement courses.
- **14.0 AGGREGATE BASE** The aggregate base material shall be spread and compacted on the prepared subgrade in conformity with the lines, grades, and dimensions shown on the plans. The aggregate base material shall conform to the requirements of Section 26 of the Standard Specifications for Class II material, ³4-inch or 1½-inches maximum size. The aggregate base material shall be compacted to a minimum relative compaction of 95 percent based upon ASTM D1557. The aggregate base material shall be spread in layers not exceeding 6 inches and each layer of aggregate material course shall be tested and approved by the Soils Engineer prior to the placement of successive layers.
- ASPHALTIC CONCRETE SURFACING Asphaltic concrete surfacing shall consist of a mixture of mineral aggregate and paving grade asphalt, mixed at a central mixing plant and spread and compacted on a prepared base in conformity with the lines, grades, and dimensions shown on the plans. The viscosity grade of the asphalt shall be PG 64-10, unless otherwise stipulated or local conditions warrant more stringent grade. The mineral aggregate shall be Type A or B, ½ inch maximum size, medium grading, and shall conform to the requirements set forth in Section 39 of the Standard Specifications. The drying, proportioning, and mixing of the materials shall conform to Section 39. The prime coat, spreading and compacting equipment, and spreading and compacting the mixture shall conform to the applicable chapters of Section 39, with the exception that no surface course shall be placed when the atmospheric temperature is below 50 degrees F. The surfacing shall be rolled with a combination steel-wheel and pneumatic rollers, as described in the Standard Specifications. The surface course shall be placed with an approved self-propelled mechanical spreading and finishing machine.

Appendix E: Soils Report

XIV.3. Infiltration BMP Fact Sheets (INF)

INF-1: Infiltration Basin Fact Sheet

An infiltration basin consists of an earthen basin constructed in naturally pervious soils (Type A or B soils) with a flat bottom. An energy dissipating inlet must be provided, along with an emergency spillway to control excess flows. An optional relief underdrain may be provided to drain the basin if standing water conditions occur. A forebay settling basin or separate treatment control measure must be provided as pretreatment. An infiltration basin retains the stormwater quality design volume in the basin and allows the retained runoff to percolate into the underlying soils in 72 hours or less. The bottom of an infiltration basin is typically vegetated with dryland grasses or irrigated turf grass; however other types of vegetation are permissible if they can survive periodic inundation and long inter-event dry periods.

Feasibility Screening Considerations

- Infiltration bains shall pass infeasibility screening criteria to be considered for use
- Infiltration basins pose a potential risk of groundwater contamination if underlying soils have very high permeability and low pollutant assimilation capacity; pretreatment should always be provided.
- Evaporation tends to be minor, therefore increases in infiltration compared to natural conditions may result.
- The potential for groundwater mounding should be evaluated if depth to seasonally high groundwater (unmounded) is less than 15 feet.

Opportunity Criteria

- Soils are adequate for infiltration or can be amended to provide an adequate infiltration rate.
- Typically need 2-5 percent of drainage area available for infiltration.
- Space available for pretreatment (biotreatment or treatment control BMP as described below).
- Also known as:

 > Recharge basins
 > Infiltration pond

Infiltration Basin

Source: Pennsylvania Stormwater BMP Manual

- Potential for groundwater contamination can be mitigated through isolation of pollutant sources, pretreatment of inflow, and/or demonstration of adequate treatment capacity of underlying soils.
- Infiltration is into native soil, or
- The depth of engineered fill is ≤ 5 feet from the bottom of the facility to native material and infiltration into fill is approved by a geotechnical professional.
- Tributary area land uses include mixed-use and commercial, sngle-family and multi-family, roads and parking lots, and parks and open spaces. Basins can be integrated into parks and open spaces. High pollutant land uses should not be tributary to infiltration BMPs.

OC-Specific Design Criteria and Considerations

Placement of BMPs shall observe geotechnical recommendations with respect to geological hazards (e.g. landslides, liquefaction zones, erosion, etc.) and set-backs (e.g., foundations,

XIV-21 May 19, 2011

utilities, roadways, etc.)
For facilities with tributary area less than 5 acres, minimum separation to mounded seasonally high groundwater of 5 feet shall be observed.
For facilities with tributary area greater than 5 acres, minimum separation to mounded seasonally high groundwater of 10 feet shall be observed.
Minimum pretreatment (settling forebay or separate BMP) should be provided upstream of the infiltration basin, and water bypassing pretreatment should \underline{not} be directed to the infiltration basin.
If a settling forebay is used, forebay should have a volume equal to 25% of facility volume and have a minimum length to width ratio of $2:1$
Infiltration basins should not be used for drainage areas with high sediment production potential unless preceded by full treatment control with a BMP effective for sediment removal.
Side-slopes should be no steeper than 3H:1V.
Design infiltration rate should be determined consistent with guidance contained in Appendix VII .
Energy dissipators should be provided at inlet and outlet to prevent erosion.
An overflow device must be provided if basin is on-line.
A minimum freeboard of one foot should be provided above the overflow device (for an on-line basin) or the outlet (for an off-line basin).
Infiltration basin bottom must be as flat as possible.
Basin length to width ratio should be a minimum of 2:1 L:W.

Simple Sizing Method for Infiltration Basins

If the Simple DCV Sizing Method is used to size an infiltration basin, the user calculates the DCV and designs the BMP geometry required to draw down the DCV in 48 hours. The sizing steps are as follows:

Step 1: Determine Infiltration Basin DCV

Calculate the DCV using the Simple Design Capture Volume Sizing Method described in **Appendix III.3.1**.

Step 2: Determine the 48-hour Depth

The depth of water that can be drawn down in 48 hours can be calculated using the following equation:

$$d_{48} = K_{DESIGN} \times 4$$

Where:

 d_{48} = basin 48-hour drawdown depth, ft

K_{DESIGN} = basin design infiltration rate, in/hr (See Appendix VII)

This is the maximum depth of the basin below the overflow device to achieve drawdown in 48 hours.

Step 3: Calculate the Required Infiltrating Area

The required infiltrating area (i.e. basin area at mid ponding depth) can be calculated using the following equation:

 $A = DCV / (d_P)$

Where:

A = required basin infiltrating area, sq-ft (assumed to be the basin area at mid-ponding depth)

DCV = design capture volume, cu-ft (see Step 1)

 d_P = ponding depth, ft (should be equal to or less than d_{48})

Capture Efficiency Method for Infiltration Basins

If BMP geometry has already been defined and deviates from the 48 hour drawdown time, the designer can use the Capture Efficiency Method for Volume-Based, Constant Drawdown BMPs (See **Appendix III.3.2**) to determine the fraction of the DCV that must be provided to manage 80 percent of average annual runoff volume. This method accounts for drawdown time different than 48 hours.

Step 1: Determine the drawdown time associated with the selected basin geometry

 $DD = (d_P / K_{DESIGN}) \times 12$

Where:

DD = time to completely drain infiltration basin ponding depth, hours

d_P = ponding depth below overflow device, ft

K_{DESIGN} = basin design infiltration rate, in/hr (See Appendix VII)

Step 2: Determine the Required Adjusted DCV for this Drawdown Time

Use the Capture Efficiency Method for Volume-Based, Constant Drawdown BMPs (**Appendix III.3.2**) to calculate the fraction of the DCV the basin must hold to achieve 80 percent capture of average annual stormwater runoff volume based on the basin drawdown time calculated above.

Step 3: Determine the Basin Infiltrating Area Needed

The required infiltrating area (i.e. basin bottom) can be calculated using the following equation:

 $A = DCV/((d_P)$

Where:

A = required basin infiltrating area, sq-ft (assumed to be the basin area at mid-ponding depth)

DCV = design capture volume, adjusted for drawdown time, cu-ft (see Step 1)

 d_P = ponding depth, ft

If the area required is greater than the selected basin area, adjust surface area or adjust ponding depth and recalculate required area until the required area is achieved.

Configuration for Use in a Treatment Train

- Infiltration basins may be preceded in a treatment train by HSCs in the drainage area, which would reduce the required design volume of the basins.
- Infiltration basins must be preceded by some form of pretreatment, which may be biotreatment or a treatment control BMP; if an approved biotreatment BMP is used as pretreatment, the overflow from the infiltration basin may be considered "biotreated" for the purposes of meeting the LID requirements.
- The overflow or bypass from an infiltration basin can be routed to a downstream biotreatment BMP and/or a treatment control BMP if additional control is required to achieve LID or treatment control requirements.

Additional References for Design Guidance

- CASQA BMP Handbook for New and Redevelopment: http://www.cabmphandbooks.com/Documents/Development/TC-11.pdf
- SMC LID Manual (pp 139): http://www.lowimpactdevelopment.org/guest75/pub/All_Projects/SoCal_LID_Manual/SoCalLID_Manual/SoCalLID_Manual_FINAL_040910.pdf
- Los Angeles County Stormwater BMP Design and Maintenance Manual, Chapter 6: http://dpw.lacounty.gov/DES/design_manuals/StormwaterBMPDesignandMaintenance.pdf
- City of Portland Stormwater Management Manual (Basin, page 2-57)
 http://www.portlandonline.com/bes/index.cfm?c=47954&a=202883
- San Diego County LID Handbook Appendix 4 (Factsheet 2): http://www.sdcounty.ca.gov/dplu/docs/LID-Appendices.pdf

XIV-24 May 19, 2011

3.1 Infiltration Basin

Type of BMP	LID - Infiltration
Treatment Mechanisms	Infiltration, Evapotranspiration (when vegetated), Evaporation, and Sedimentation
Maximum Treatment Area	50 acres
Other Names	Bioinfiltration Basin

Description

An Infiltration Basin is a flat earthen basin designed to capture the design capture volume, V_{BMP}. The stormwater infiltrates through the bottom of the basin into the underlying soil over a 72 hour drawdown period. Flows exceeding discharge to downstream V_{BMP} must а system. Trash and conveyance sediment accumulate within the forebay as stormwater passes into the basin. Infiltration basins are highly effective in removing all targeted pollutants from stormwater runoff.

Figure 1 – Infiltration Basin

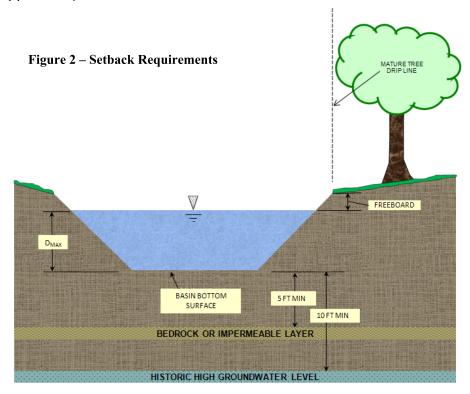
See Appendix A, and Appendix C, Section 1 of Basin Guidelines, for additional requirements.

Siting Considerations

The use of infiltration basins may be restricted by concerns over ground water contamination, soil permeability, and clogging at the site. See the applicable WQMP for any specific feasibility considerations for using infiltration BMPs. Where this BMP is being used, the soil beneath the basin must be thoroughly evaluated in a geotechnical report since the underlying soils are critical to the basin's long term performance. To protect the basin from erosion, the sides and bottom of the basin must be vegetated, preferably with native or low water use plant species.

In addition, these basins may not be appropriate for the following site conditions:

- Industrial sites or locations where spills of toxic materials may occur
- Sites with very low soil infiltration rates
- Sites with high groundwater tables or excessively high soil infiltration rates, where pollutants can affect ground water quality
- Sites with unstabilized soil or construction activity upstream
- On steeply sloping terrain
- Infiltration basins located in a fill condition should refer to Appendix A of this Handbook for details on special requirements/restrictions


Setbacks

Always consult your geotechnical engineer for site specific recommendations regarding setbacks for infiltration trenches. Recommended setbacks are needed to protect buildings, existing trees, walls, onsite or nearby wells, streams, and tanks. Setbacks should be considered early in the design process since they can affect where infiltration facilities may be placed and how deep they are allowed to be. For instance, depth setbacks can dictate fairly shallow facilities that will have a larger footprint and, in some cases, may make an infiltration basin infeasible. In that instance, another BMP must be selected.

Infiltration basins typically must be set back:

- 10 feet from the historic high groundwater (measured vertically from the bottom of the basin, as shown in Figure 2)
- 5 feet from bedrock or impermeable surface layer (measured vertically from the bottom of the basin, as shown in Figure 2)
- From all existing mature tree drip lines as indicated in Figure 2 (to protect their root structure)
- 100 feet horizontally from wells, tanks or springs

Setbacks to walls and foundations must be included as part of the Geotechnical Report. All other setbacks shall be in accordance with applicable standards of the District's *Basin Guidelines* (Appendix C).

Forebay

A concrete forebay shall be provided to reduce sediment clogging and to reduce erosion. The forebay shall have a design volume of at least 0.5% V_{BMP} and a minimum 1 foot high concrete splashwall / berm. Full height notch-type weir(s), offset from the line of flow from the basin inlet to prevent short circuiting, shall be used to outlet the forebay. It is recommended that two weirs be used and that they be located on opposite sides of the forebay (see Figure 2).

Overflow

Flows exceeding V_{BMP} must discharge to an acceptable downstream conveyance system. Where an adequate outlet is present, an overflow structure may be used. Where an embankment is present, an emergency spillway may be used instead. Overflows must be placed just above the design water surface for V_{BMP} and be near the outlet of the system. The overflow structure shall be similar to the District's Standard Drawing CB 110. Additional details may be found in the District's Basin Guidelines (Appendix C).

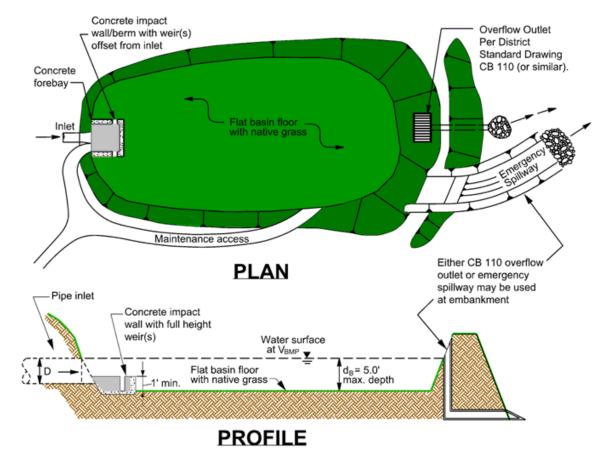


Figure 3 - Infiltration Basin

Landscaping Requirements

Basin vegetation provides erosion protection, improves sediment removal and assists in allowing infiltration to occur. The basin surface and side slopes shall be planted with native grasses. Proper landscape management is also required to ensure that the vegetation does not contribute to water pollution through pesticides, herbicides, or fertilizers. Landscaping shall be in accordance with County of Riverside Ordinance 859 and the District's *Basin Guidelines* (Appendix C), or other guidelines issued by the Engineering Authority.

Maintenance

Normal maintenance of an infiltration basin includes the maintenance of landscaping, debris and trash removal from the surface of the basin, and tending to problems associated with standing water (vectors, odors, etc.). Significant ponding, especially more than 72 hours after an event, may indicate that the basin surface is no longer providing sufficient infiltration and requires aeration. See the District's *Basin Guidelines* (Appendix C) for additional requirements (i.e., fencing, maintenance access, etc.).

Table 1 - Inspection and Maintenance

Schedule	Inspection and Maintenance Activity
Ongoing including just before annual storm seasons and following rainfall events.	 Maintain vegetation as needed. Use of fertilizers, pesticides and herbicides should be strenuously avoided to ensure they don't contribute to water pollution. If appropriate native plant selections and other IPM methods are used, such products shouldn't be needed. If such projects are used,
Annually. If possible, schedule these inspections within 72 hours after a significant rainfall.	 Inspection of hydraulic and structural facilities. Examine the inlet for blockage, the embankment and spillway integrity, as well as damage to any structural element. Check for erosion, slumping and overgrowth. Repair as needed. Check basin depth for sediment build up and reduced total capacity. Scrape bottom as needed and remove sediment. Restore to original cross-section and infiltration rate. Replant basin vegetation. Verify the basin bottom is allowing acceptable infiltration. Use a disc or other method to aerate basin bottom only if there is actual significant loss of infiltrative capacity, rather than on a routine basis¹. No water should be present 72 hours after an event. No long term standing water should be present at all. No algae formation should be visible. Correct problem as needed.
1. CA Stormwater BMP Handboo	k for New Development and Significant Redevelopment

Table 2 - Design and Sizing Criteria for Infiltration Basins

Design Parameter	Infiltration Basin		
Design Volume	V_{BMP}		
Forebay Volume	0.5% V _{BMP}		
Drawdown time (maximum)	72 hours		
Maximum tributary area	50 acres ²		
Minimum infiltration rate	Must be sufficient to drain the basin within the required Drawdown time over the life of the BMP. The WQMP may include specific requirements for minimum tested infiltration rates.		
Maximum Depth	5 feet		
Spillway erosion control	Energy dissipators to reduce velocities ¹		
Basin Slope	0%		
Freeboard (minimum)	1 foot ¹		
Historic High Groundwater Setback (max)	10 feet		
Bedrock/impermeable layer setback (max)	5 feet		
Tree setbacks	Mature tree drip line must not overhang the basin		
Set back from wells, tanks or springs	100 feet		
Set back from foundations As recommended in Geotechnical Report			
 Ventura County's Technical Guidance Manual for Stormwater Quality Control Measures CA Stormwater BMP Handbook for New Development and Significant Redevelopment 			

Note: The information contained in this BMP Factsheet is intended to be a summary of design considerations and requirements. Additional information which applies to all detention basins may be found in the District's Basin Guidelines (Appendix C). In addition, information herein may be superseded by other guidelines issued by the co-permittee.

INFILTRATION BASIN SIZING PROCEDURE

- 1. Find the Design Volume, V_{BMP}.
 - a) Enter the Tributary Area, A_{T.}
 - b) Enter the Design Volume, V_{BMP}, determined from Section 2.1 of this Handbook.
- 2. Determine the Maximum Depth.
 - a) Enter the infiltration rate. The infiltration rate shall be established as described in Appendix A: "Infiltration Testing".
 - b) Enter the design Factor of Safety from Table 1 in Appendix A: "Infiltration Testing".
 - c) The spreadsheet will determine D₁, the maximum allowable depth of the basin based on the infiltration rate along with the maximum drawdown time (72 hours) and the Factor of Safety.

$$D_1 = [(t) x (I)] / 12s$$

Where I = site infiltration rate (in/hr)

s = safety factor

t = drawdown time (maximum 72 hours)

- d) Enter the depth of freeboard.
- e) Enter the depth to the historic high groundwater level measured from the top of the hasin
- f) Enter the depth to the top of bedrock or other impermeable layer measured from the finished grade.
- g) The spreadsheet will determine D₂, the total basin depth (including freeboard, if used) of the basin, based on restrictions to the depth by groundwater and an impermeable layer.

 D_2 = Depth to groundwater – (10 + freeboard) (ft);

or

 D_2 = Depth to impermeable layer – (5 + freeboard) (ft)

Whichever is least.

h) The spreadsheet will determine the maximum allowable effective depth of basin, D_{MAX} , based on the smallest value between D_1 and D_2 . D_{MAX} is the maximum depth of water only and does not include freeboard. D_{MAX} shall not exceed 5 feet.

3. Basin Geometry

- a) Enter the basin side slopes, z (no steeper than 4:1).
- b) Enter the proposed basin depth, d_B excluding freeboard.
- c) The spreadsheet will determine the minimum required surface area of the basin:

$$A_s = V_{BMP} / d_B$$

Where A_s = minimum area required (ft²) V_{BMP} = volume of the infiltration basin (ft³) d_B = proposed depth not to exceed maximum allowable depth, D_{MAX} (ft)

d) Enter the proposed bottom surface area. This area shall not be less than the minimum required surface area.

4. Forebay

A concrete forebay with a design volume of at least 0.5% V_{BMP} and a minimum 1 foot high concrete splashwall shall be provided. Full-height rectangular weir(s) shall be used to outlet the forebay. The weir(s) must be offset from the line of flow from the basin inlet. It is recommended that two weirs be used and that they be located on opposite sides of the forebay (see Figure 2).

- a) The spreadsheet will determine the minimum required forebay volume based on 0.5% V_{BMP} .
- b) Enter the proposed depth of the forebay berm/splashwall (1foot minimum).
- c) The spreadsheet will determine the minimum required forebay surface area.
- d) Enter the width of rectangular weir to be used (minimum 1.5 inches). Weir width should be established based on a 5 minute drawdown time.

Infiltration Basin - Design Procedure	BMP ID	Legend:	Required Entries
(Rev. 03-2012) Company Name:			Calculated Cells Date:
Designed by:	7 1	County/City C	Case No.:
Design V	Volume		
a) Tributary area (BMP subarea)		$A_T = $	acres
b) Enter V_{BMP} determined from Section 2.1 of this Handbo	ok	$ m V_{BMP} =$	ft^3
Maximun	n Depth		
a) Infiltration rate		I =	in/hr
b) Factor of Safety (See Table 1, Appendix A: "Infiltration from this BMP Handbook)	Testing"	FS =	
c) Calculate D_1 $D_1 = I (in/hr) x 72 hrs$		$\mathbf{D}_1 = \mathbf{I}$	ft
12 (in/ft) x FS			
d) Enter the depth of freeboard (at least 1 ft)			ft
e) Enter depth to historic high ground water (measured from	m top of basin)		ft
f) Enter depth to top of bedrock or impermeable layer (mea	sured from top o	of basin)	ft
g) D ₂ is the smaller of:			
Depth to groundwater - (10 ft + freeboard) and Depth to impermeable layer - (5 ft + freeboard)		$D_2 =$	ft
h) D_{MAX} is the smaller value of D_1 and D_2 but shall not exc	eed 5 feet	$D_{MAX} =$	ft
Basin Ge	eometry		
a) Basin side slopes (no steeper than 4:1)		z =	:1
b) Proposed basin depth (excluding freeboard)		$d_B =$	ft
c) Minimum bottom surface area of basin ($A_S = V_{BMP}/d_B$)		$A_S =$	ft^2
d) Proposed Design Surface Area		$A_D =$	ft^2
Fore	bay		
a) Forebay volume (minimum $0.5\%~V_{BMP}$)		Volume =	ft^3
b) Forebay depth (height of berm/splashwall. 1 foot min.)		Depth =	ft
c) Forebay surface area (minimum)		Area =	ft^2
, ,			

Appendix F: Covenant and agreements, BMP maintance agreements and/or other mechanisms for ensuring ongoing operation, maintenance, funding and transfer of requirements for this project - specific WQMP

RECORDING REQUESTED BY:

County of San Bernardino Department of Public Works

AND WHEN RECORDED MAIL TO:

County of San Bernardino Department of Public Works 825 E. Third Street, Room 117 San Bernardino, CA 92415-0835

SPACE ABOVE THIS LINE FOR RECORDER'S USE

COVENANT AND AGREEMENT REGARDING WATER QUALITY MANAGEMENT PLAN AND STORMWATER BEST MANAGEMENT PRACTICES TRANSFER, ACCESS AND MAINTENANCE

THIS PAGE ADDED TO PROVIDE ADEQUATE SPACE FOR RECORDING INFORMATION.

Covenant and Agreement Regarding Water Quality Management Plan and Stormwater Best Management Practices Transfer, Access and Maintenance

OWNER NAME:		
PROPERTY ADDRESS:		
APN:		
THIS AGREEMENT is made and entered	into in	
	,California, this	day of
	, by and between	
	, hereina	fter
referred to as Owner, and the COUNTY C State of California, hereinafter referred to		tical subdivision of the
WHEREAS, the Owner owns real propert California, more specifically described in I exhibits is attached hereto and incorporat	Exhibit "A" and depicted in Ext	nibit "B", each of which
WHEREAS, at the time of initial approval	of development project knowr	ı as
the County required the project to employ "BMPs," to minimize pollutants in urban ru	within the Property Best Management Practices, unoff; and	
WHEREAS, the Owner has chosen to ins Quality Management Plan, datedi incorporated herein by this reference, her in urban runoff and to minimize other adv	, on file wireinafter referred to as "WQMF	th the County and P", to minimize pollutants
WHEREAS , said WQMP has been certifice County; and	ed by the Owner and reviewed	l and approved by the

WHEREAS, the Owner is aware that periodic and continuous maintenance, including, but not necessarily limited to, filter material replacement and sediment removal, is required to assure peak performance of all BMPs in the WQMP and that, furthermore, such maintenance activity will require compliance with all Local, State, or Federal laws and regulations, including those pertaining to confined space and waste disposal methods, in effect at the time such maintenance occurs.

NOW THEREFORE, it is mutually stipulated and agreed as follows:

- 1. Owner shall comply with the WQMP.
- 2. All maintenance or replacement of BMPs proposed as part of the WQMP are the sole responsibility of the Owner in accordance with the terms of this Agreement.
- 3. Owner hereby provides the County's designee complete access, of any duration, to the BMPs and their immediate vicinity at any time, upon reasonable notice, or in the event of emergency, as determined by the County Director of Public Works, no advance notice, for the purpose of inspection, sampling, testing of the BMPs, and in case of emergency, to undertake all necessary repairs or other preventative measures at owner's expense as provided in paragraph 5 below. The County shall make every effort at all times to minimize or avoid interference with Owner's use of the Property. Denial of access to any premises or facility that contains WQMP features is a breach of this Agreement and may also be a violation of the County's Pollutant Discharge Elimination System regulations, which on the effective date of this Agreement are found in County Code Sections 35.0101 et seq. If there is reasonable cause to believe that an illicit discharge or breach of this Agreement is occurring on the premises then the authorized enforcement agency may seek issuance of a search warrant from any court of competent jurisdiction in addition to other enforcement actions. Owner recognizes that the County may perform routine and regular inspections, as well as emergency inspections, of the BMPs. Owner or Owner's successors or assigns shall pay County for all costs incurred by County in the inspection, sampling, testing of the BMPs within thirty (30) calendar days of County invoice.
- 4. Owner shall use its best efforts diligently to maintain all BMPs in a manner assuring peak performance at all times. All reasonable precautions shall be exercised by Owner and Owner's representative or contractor in the removal and extraction of any material(s) from the BMPs and the ultimate disposal of the material(s) in a manner consistent with all relevant laws and regulations in effect at the time. As may be requested from time to time by the County, the Owner shall provide the County with documentation identifying the material(s) removed, the quantity, and disposal destination), testing construction or reconstruction.
- 5. In the event Owner, or its successors or assigns, fails to accomplish the necessary maintenance contemplated by this Agreement, within five (5) business days of being given written notice by the County, the County is hereby authorized to cause any maintenance necessary to be done and charge the entire cost and expense against the Property and/or to the Owner or Owner's successors or assigns, including administrative costs, attorneys fees and interest thereon at the maximum rate authorized by the County Code from the date of the notice of expense until paid in full. Owner or Owner's successors or assigns shall pay County within thirty (30) calendar days of County invoice.
- 6. The County may require the owner to post security in form and for a time period satisfactory to the County to guarantee the performance of the obligations stated herein. Should the Owner fail to perform the obligations under the Agreement, the County may, in the case of a cash bond, act for the Owner using the proceeds from it, or in the case of a surety bond, require the surety(ies) to perform the obligations of this Agreement.

- 7. The County agrees, from time to time, within ten (10) business days after request of Owner, to execute and deliver to Owner, or Owner's designee, an estoppel certificate requested by Owner, stating that this Agreement is in full force and effect, and that Owner is not in default hereunder with regard to any maintenance or payment obligations (or specifying in detail the nature of Owner's default). Owner shall pay all costs and expenses incurred by the County in its investigation of whether to issue an estoppel certificate within thirty (30) calendar days after receipt of a County invoice and prior to the County's issuance of such certificate. Where the County cannot issue an estoppel certificate, Owner shall pay the County within thirty (30) calendar days of receipt of a County invoice.
- 8. Owner shall not change any BMPs identified in the WQMP without an amendment to this Agreement approved by authorized representatives of both the County and the Owner.
- 9. County and Owner shall comply with all applicable laws, ordinances, rules, regulations, court orders and government agency orders now or hereinafter in effect in carrying out the terms of this Agreement. If a provision of this Agreement is terminated or held to be invalid, illegal or unenforceable, the validity, legality and enforceability of the remaining provisions shall remain in full effect.
- 10. In addition to any remedy available to County under this Agreement, if Owner violates any term of this Agreement and does not cure the violation within the time already provided in this Agreement, or, if not provided, within thirty (30) calendar days, or within such time authorized by the County if said cure reasonably requires more than the subject time, the County may bring an action at law or in equity in a court of competent jurisdiction to enforce compliance by the Owner with the terms of this Agreement. In such action, the County may recover any damages to which the County may be entitled for the violation, enjoin the violation by temporary or permanent injunction without the necessity of proving actual damages or the inadequacy of otherwise available legal remedies, or obtain other equitable relief, including, but not limited to, the restoration of the Property and/or the BMPs identified in the WQMP to the condition in which it/they existed prior to any such violation or injury.
- 11. This Agreement shall be recorded in the Office of the Recorder of San Bernardino County, California, at the expense of the Owner and shall constitute notice to all successors and assigns of the title to said Property of the obligation herein set forth, and also a lien in such amount as will fully reimburse the County, including interest as herein above set forth, subject to foreclosure in event of default in payment.
- 12. In event of legal action occasioned by any default or action of the Owner, or its successors or assigns, then the Owner and its successors or assigns agree(s) to hold the County harmless and pay all costs incurred by the County in enforcing the terms of this Agreement, including reasonable attorney's fees and costs, and that the same shall become a part of the lien against said Property.
- 13. It is the intent of the parties hereto that burdens and benefits herein undertaken shall constitute covenants that run with said Property and constitute a lien there against.
- 14. The obligations herein undertaken shall be binding upon the heirs, successors, executors, administrators and assigns of the parties hereto. The term "Owner" shall include not only the present Owner, but also its heirs, successors, executors, administrators, and assigns. Owner shall notify any successor to title of all or part of the Property about the existence of this Agreement. Owner shall provide such notice prior to such successor obtaining an

- interest in all or part of the Property. Owner shall provide a copy of such notice to the County at the same time such notice is provided to the successor.
- 15. Time is of the essence in the performance of this Agreement.
- 16. Any notice to a party required or called for in this Agreement shall be served in person, or by deposit in the U.S. Mail, first class postage prepaid, to the address set forth below. Notice(s) shall be deemed effective upon receipt, or seventy-two (72) hours after deposit in the U.S. Mail, whichever is earlier. A party may change a notice address only by providing written notice thereof to the other party.
- 17. Owner agrees to indemnify, defend (with counsel reasonably approved by the County) and hold harmless the County and its authorized officers, employees, agents and volunteers from any and all claims, actions, losses, damages, and/or liability arising out of this Agreement from any cause whatsoever, including the acts, errors or omissions of any person and for any costs or expenses incurred by the County on account of any claim except where such indemnification is prohibited by law. This indemnification provision shall apply regardless of the existence or degree of fault of indemnitees. The Owner's indemnification obligation applies to the County's "active" as well as "passive" negligence but does not apply to the County's "sole negligence" or "willful misconduct" within the meaning of Civil Code Section 2782, or to any claims, actions, losses, damages, and/or liabilities, to the extent caused by the acts or omissions of any third party contractors undertaking any work (other than field inspections) or other maintenance on the Property on behalf of the County under this Agreement..

[REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK]

IF TO COUNTY:	IF TO OWNER:
Director of Public Works	
825 E. Third Street, Room 117	
San Bernardino, CA 92415-0835	
IN WITNESS THEREOF , the parties hereto above.	have affixed their signatures as of the date first written
OWNER:	FOR: Maintananae Agreement dated
Company/Trust:	
Name:	, for the, project known as
Title:	
Date:	
OWNER: Company/Trust:	(APN), As described in the WQMP dated
Signature:	
Name:	
Title:	
Date:	
NOTARIE	S ON FOLLOWING PAGE
A notary acknowledgement is required for record	
ACCEPTED BY:	
BRENDON BIGGS, M.S., P.E., Director of Public	c Works
Date:	_
Attachment: Notary Acknowledgement	